Metamath Proof Explorer


Theorem fvconstdomi

Description: A constant function's value is dominated by the constant. (An artifact of our function value definition.) (Contributed by Zhi Wang, 18-Sep-2024)

Ref Expression
Hypothesis fvconstdomi.1
|- B e. _V
Assertion fvconstdomi
|- ( ( A X. { B } ) ` X ) ~<_ B

Proof

Step Hyp Ref Expression
1 fvconstdomi.1
 |-  B e. _V
2 dmxpss
 |-  dom ( A X. { B } ) C_ A
3 2 sseli
 |-  ( X e. dom ( A X. { B } ) -> X e. A )
4 1 fvconst2
 |-  ( X e. A -> ( ( A X. { B } ) ` X ) = B )
5 3 4 syl
 |-  ( X e. dom ( A X. { B } ) -> ( ( A X. { B } ) ` X ) = B )
6 domrefg
 |-  ( B e. _V -> B ~<_ B )
7 1 6 ax-mp
 |-  B ~<_ B
8 5 7 eqbrtrdi
 |-  ( X e. dom ( A X. { B } ) -> ( ( A X. { B } ) ` X ) ~<_ B )
9 ndmfv
 |-  ( -. X e. dom ( A X. { B } ) -> ( ( A X. { B } ) ` X ) = (/) )
10 1 0dom
 |-  (/) ~<_ B
11 9 10 eqbrtrdi
 |-  ( -. X e. dom ( A X. { B } ) -> ( ( A X. { B } ) ` X ) ~<_ B )
12 8 11 pm2.61i
 |-  ( ( A X. { B } ) ` X ) ~<_ B