Metamath Proof Explorer


Theorem mobidv

Description: Formula-building rule for the at-most-one quantifier (deduction form). (Contributed by Mario Carneiro, 7-Oct-2016) Reduce axiom dependencies and shorten proof. (Revised by BJ, 7-Oct-2022)

Ref Expression
Hypothesis mobidv.1
|- ( ph -> ( ps <-> ch ) )
Assertion mobidv
|- ( ph -> ( E* x ps <-> E* x ch ) )

Proof

Step Hyp Ref Expression
1 mobidv.1
 |-  ( ph -> ( ps <-> ch ) )
2 1 alrimiv
 |-  ( ph -> A. x ( ps <-> ch ) )
3 mobi
 |-  ( A. x ( ps <-> ch ) -> ( E* x ps <-> E* x ch ) )
4 2 3 syl
 |-  ( ph -> ( E* x ps <-> E* x ch ) )