Metamath Proof Explorer


Theorem f1omo

Description: There is at most one element in the function value of a constant function whose output is 1o . (An artifact of our function value definition.) Proof could be significantly shortened by fvconstdomi assuming ax-un (see f1omoALT ). (Contributed by Zhi Wang, 19-Sep-2024)

Ref Expression
Hypothesis f1omo.1 φF=A×1𝑜
Assertion f1omo φ*yyFX

Proof

Step Hyp Ref Expression
1 f1omo.1 φF=A×1𝑜
2 1oex 1𝑜V
3 eqid A×1𝑜X=A×1𝑜X
4 2 3 fvconst0ci A×1𝑜X=A×1𝑜X=1𝑜
5 mo0 A×1𝑜X=*yyA×1𝑜X
6 el1o y1𝑜y=
7 el1o x1𝑜x=
8 eqtr3 y=x=y=x
9 6 7 8 syl2anb y1𝑜x1𝑜y=x
10 9 gen2 yxy1𝑜x1𝑜y=x
11 eleq1w y=xy1𝑜x1𝑜
12 11 mo4 *yy1𝑜yxy1𝑜x1𝑜y=x
13 10 12 mpbir *yy1𝑜
14 eleq2w2 A×1𝑜X=1𝑜yA×1𝑜Xy1𝑜
15 14 mobidv A×1𝑜X=1𝑜*yyA×1𝑜X*yy1𝑜
16 13 15 mpbiri A×1𝑜X=1𝑜*yyA×1𝑜X
17 5 16 jaoi A×1𝑜X=A×1𝑜X=1𝑜*yyA×1𝑜X
18 4 17 ax-mp *yyA×1𝑜X
19 1 fveq1d φFX=A×1𝑜X
20 19 eleq2d φyFXyA×1𝑜X
21 20 mobidv φ*yyFX*yyA×1𝑜X
22 18 21 mpbiri φ*yyFX