Metamath Proof Explorer


Theorem f1omo

Description: There is at most one element in the function value of a constant function whose output is 1o . (An artifact of our function value definition.) Proof could be significantly shortened by fvconstdomi assuming ax-un (see f1omoALT ). (Contributed by Zhi Wang, 19-Sep-2024) (Proof shortened by SN, 24-Nov-2025)

Ref Expression
Hypothesis f1omo.1 φ F = A × 1 𝑜
Assertion f1omo φ * y y F X

Proof

Step Hyp Ref Expression
1 f1omo.1 φ F = A × 1 𝑜
2 1oex 1 𝑜 V
3 eqid A × 1 𝑜 X = A × 1 𝑜 X
4 2 3 fvconst0ci A × 1 𝑜 X = A × 1 𝑜 X = 1 𝑜
5 mo0 A × 1 𝑜 X = * y y A × 1 𝑜 X
6 df1o2 1 𝑜 =
7 6 eqeq2i A × 1 𝑜 X = 1 𝑜 A × 1 𝑜 X =
8 mosn A × 1 𝑜 X = * y y A × 1 𝑜 X
9 7 8 sylbi A × 1 𝑜 X = 1 𝑜 * y y A × 1 𝑜 X
10 5 9 jaoi A × 1 𝑜 X = A × 1 𝑜 X = 1 𝑜 * y y A × 1 𝑜 X
11 4 10 ax-mp * y y A × 1 𝑜 X
12 1 fveq1d φ F X = A × 1 𝑜 X
13 12 eleq2d φ y F X y A × 1 𝑜 X
14 13 mobidv φ * y y F X * y y A × 1 𝑜 X
15 11 14 mpbiri φ * y y F X