Metamath Proof Explorer


Theorem mobii

Description: Formula-building rule for the at-most-one quantifier (inference form). (Contributed by NM, 9-Mar-1995) (Revised by Mario Carneiro, 17-Oct-2016)

Ref Expression
Hypothesis mobii.1 ( 𝜓𝜒 )
Assertion mobii ( ∃* 𝑥 𝜓 ↔ ∃* 𝑥 𝜒 )

Proof

Step Hyp Ref Expression
1 mobii.1 ( 𝜓𝜒 )
2 mobi ( ∀ 𝑥 ( 𝜓𝜒 ) → ( ∃* 𝑥 𝜓 ↔ ∃* 𝑥 𝜒 ) )
3 2 1 mpg ( ∃* 𝑥 𝜓 ↔ ∃* 𝑥 𝜒 )