Metamath Proof Explorer


Theorem prstchom

Description: Hom-sets of the constructed category are dependent on the preorder.

Note that prstchom.x and prstchom.y are redundant here due to our definition of ProsetToCat . However, this should not be assumed as it is definition-dependent. Therefore, the two hypotheses are added for explicitness. (Contributed by Zhi Wang, 20-Sep-2024)

Ref Expression
Hypotheses prstcnid.c ( 𝜑𝐶 = ( ProsetToCat ‘ 𝐾 ) )
prstcnid.k ( 𝜑𝐾 ∈ Proset )
prstchom.l ( 𝜑 = ( le ‘ 𝐶 ) )
prstchom.e ( 𝜑𝐻 = ( Hom ‘ 𝐶 ) )
prstchom.x ( 𝜑𝑋 ∈ ( Base ‘ 𝐶 ) )
prstchom.y ( 𝜑𝑌 ∈ ( Base ‘ 𝐶 ) )
Assertion prstchom ( 𝜑 → ( 𝑋 𝑌 ↔ ( 𝑋 𝐻 𝑌 ) ≠ ∅ ) )

Proof

Step Hyp Ref Expression
1 prstcnid.c ( 𝜑𝐶 = ( ProsetToCat ‘ 𝐾 ) )
2 prstcnid.k ( 𝜑𝐾 ∈ Proset )
3 prstchom.l ( 𝜑 = ( le ‘ 𝐶 ) )
4 prstchom.e ( 𝜑𝐻 = ( Hom ‘ 𝐶 ) )
5 prstchom.x ( 𝜑𝑋 ∈ ( Base ‘ 𝐶 ) )
6 prstchom.y ( 𝜑𝑌 ∈ ( Base ‘ 𝐶 ) )
7 1 2 3 prstchomval ( 𝜑 → ( × { 1o } ) = ( Hom ‘ 𝐶 ) )
8 4 7 eqtr4d ( 𝜑𝐻 = ( × { 1o } ) )
9 1oex 1o ∈ V
10 9 a1i ( 𝜑 → 1o ∈ V )
11 1n0 1o ≠ ∅
12 11 a1i ( 𝜑 → 1o ≠ ∅ )
13 8 10 12 fvconstrn0 ( 𝜑 → ( 𝑋 𝑌 ↔ ( 𝑋 𝐻 𝑌 ) ≠ ∅ ) )