Description: Hom-sets of the constructed category are dependent on the preorder.
Note that prstchom.x and prstchom.y are redundant here due to our definition of ProsetToCat . However, this should not be assumed as it is definition-dependent. Therefore, the two hypotheses are added for explicitness. (Contributed by Zhi Wang, 20-Sep-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | prstcnid.c | ⊢ ( 𝜑 → 𝐶 = ( ProsetToCat ‘ 𝐾 ) ) | |
prstcnid.k | ⊢ ( 𝜑 → 𝐾 ∈ Proset ) | ||
prstchom.l | ⊢ ( 𝜑 → ≤ = ( le ‘ 𝐶 ) ) | ||
prstchom.e | ⊢ ( 𝜑 → 𝐻 = ( Hom ‘ 𝐶 ) ) | ||
prstchom.x | ⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝐶 ) ) | ||
prstchom.y | ⊢ ( 𝜑 → 𝑌 ∈ ( Base ‘ 𝐶 ) ) | ||
Assertion | prstchom | ⊢ ( 𝜑 → ( 𝑋 ≤ 𝑌 ↔ ( 𝑋 𝐻 𝑌 ) ≠ ∅ ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prstcnid.c | ⊢ ( 𝜑 → 𝐶 = ( ProsetToCat ‘ 𝐾 ) ) | |
2 | prstcnid.k | ⊢ ( 𝜑 → 𝐾 ∈ Proset ) | |
3 | prstchom.l | ⊢ ( 𝜑 → ≤ = ( le ‘ 𝐶 ) ) | |
4 | prstchom.e | ⊢ ( 𝜑 → 𝐻 = ( Hom ‘ 𝐶 ) ) | |
5 | prstchom.x | ⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝐶 ) ) | |
6 | prstchom.y | ⊢ ( 𝜑 → 𝑌 ∈ ( Base ‘ 𝐶 ) ) | |
7 | 1 2 3 | prstchomval | ⊢ ( 𝜑 → ( ≤ × { 1o } ) = ( Hom ‘ 𝐶 ) ) |
8 | 4 7 | eqtr4d | ⊢ ( 𝜑 → 𝐻 = ( ≤ × { 1o } ) ) |
9 | 1oex | ⊢ 1o ∈ V | |
10 | 9 | a1i | ⊢ ( 𝜑 → 1o ∈ V ) |
11 | 1n0 | ⊢ 1o ≠ ∅ | |
12 | 11 | a1i | ⊢ ( 𝜑 → 1o ≠ ∅ ) |
13 | 8 10 12 | fvconstrn0 | ⊢ ( 𝜑 → ( 𝑋 ≤ 𝑌 ↔ ( 𝑋 𝐻 𝑌 ) ≠ ∅ ) ) |