Description: Hom-sets of the constructed category are dependent on the preorder.
Note that prstchom.x and prstchom.y are redundant here due to our definition of ProsetToCat ( see prstchom2ALT ). However, this should not be assumed as it is definition-dependent. Therefore, the two hypotheses are added for explicitness. (Contributed by Zhi Wang, 21-Sep-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | prstcnid.c | ⊢ ( 𝜑 → 𝐶 = ( ProsetToCat ‘ 𝐾 ) ) | |
prstcnid.k | ⊢ ( 𝜑 → 𝐾 ∈ Proset ) | ||
prstchom.l | ⊢ ( 𝜑 → ≤ = ( le ‘ 𝐶 ) ) | ||
prstchom.e | ⊢ ( 𝜑 → 𝐻 = ( Hom ‘ 𝐶 ) ) | ||
prstchom.x | ⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝐶 ) ) | ||
prstchom.y | ⊢ ( 𝜑 → 𝑌 ∈ ( Base ‘ 𝐶 ) ) | ||
Assertion | prstchom2 | ⊢ ( 𝜑 → ( 𝑋 ≤ 𝑌 ↔ ∃! 𝑓 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prstcnid.c | ⊢ ( 𝜑 → 𝐶 = ( ProsetToCat ‘ 𝐾 ) ) | |
2 | prstcnid.k | ⊢ ( 𝜑 → 𝐾 ∈ Proset ) | |
3 | prstchom.l | ⊢ ( 𝜑 → ≤ = ( le ‘ 𝐶 ) ) | |
4 | prstchom.e | ⊢ ( 𝜑 → 𝐻 = ( Hom ‘ 𝐶 ) ) | |
5 | prstchom.x | ⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝐶 ) ) | |
6 | prstchom.y | ⊢ ( 𝜑 → 𝑌 ∈ ( Base ‘ 𝐶 ) ) | |
7 | 1 2 3 4 5 6 | prstchom | ⊢ ( 𝜑 → ( 𝑋 ≤ 𝑌 ↔ ( 𝑋 𝐻 𝑌 ) ≠ ∅ ) ) |
8 | 1 2 | prstcthin | ⊢ ( 𝜑 → 𝐶 ∈ ThinCat ) |
9 | eqidd | ⊢ ( 𝜑 → ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) ) | |
10 | 8 5 6 9 4 | thincn0eu | ⊢ ( 𝜑 → ( ( 𝑋 𝐻 𝑌 ) ≠ ∅ ↔ ∃! 𝑓 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) ) |
11 | 7 10 | bitrd | ⊢ ( 𝜑 → ( 𝑋 ≤ 𝑌 ↔ ∃! 𝑓 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) ) |