Metamath Proof Explorer


Theorem prstchom2

Description: Hom-sets of the constructed category are dependent on the preorder.

Note that prstchom.x and prstchom.y are redundant here due to our definition of ProsetToCat ( see prstchom2ALT ). However, this should not be assumed as it is definition-dependent. Therefore, the two hypotheses are added for explicitness. (Contributed by Zhi Wang, 21-Sep-2024)

Ref Expression
Hypotheses prstcnid.c ( 𝜑𝐶 = ( ProsetToCat ‘ 𝐾 ) )
prstcnid.k ( 𝜑𝐾 ∈ Proset )
prstchom.l ( 𝜑 = ( le ‘ 𝐶 ) )
prstchom.e ( 𝜑𝐻 = ( Hom ‘ 𝐶 ) )
prstchom.x ( 𝜑𝑋 ∈ ( Base ‘ 𝐶 ) )
prstchom.y ( 𝜑𝑌 ∈ ( Base ‘ 𝐶 ) )
Assertion prstchom2 ( 𝜑 → ( 𝑋 𝑌 ↔ ∃! 𝑓 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) )

Proof

Step Hyp Ref Expression
1 prstcnid.c ( 𝜑𝐶 = ( ProsetToCat ‘ 𝐾 ) )
2 prstcnid.k ( 𝜑𝐾 ∈ Proset )
3 prstchom.l ( 𝜑 = ( le ‘ 𝐶 ) )
4 prstchom.e ( 𝜑𝐻 = ( Hom ‘ 𝐶 ) )
5 prstchom.x ( 𝜑𝑋 ∈ ( Base ‘ 𝐶 ) )
6 prstchom.y ( 𝜑𝑌 ∈ ( Base ‘ 𝐶 ) )
7 1 2 3 4 5 6 prstchom ( 𝜑 → ( 𝑋 𝑌 ↔ ( 𝑋 𝐻 𝑌 ) ≠ ∅ ) )
8 1 2 prstcthin ( 𝜑𝐶 ∈ ThinCat )
9 eqidd ( 𝜑 → ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) )
10 8 5 6 9 4 thincn0eu ( 𝜑 → ( ( 𝑋 𝐻 𝑌 ) ≠ ∅ ↔ ∃! 𝑓 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) )
11 7 10 bitrd ( 𝜑 → ( 𝑋 𝑌 ↔ ∃! 𝑓 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) )