Metamath Proof Explorer


Theorem prstchom2

Description: Hom-sets of the constructed category are dependent on the preorder.

Note that prstchom.x and prstchom.y are redundant here due to our definition of ProsetToCat ( see prstchom2ALT ). However, this should not be assumed as it is definition-dependent. Therefore, the two hypotheses are added for explicitness. (Contributed by Zhi Wang, 21-Sep-2024)

Ref Expression
Hypotheses prstcnid.c
|- ( ph -> C = ( ProsetToCat ` K ) )
prstcnid.k
|- ( ph -> K e. Proset )
prstchom.l
|- ( ph -> .<_ = ( le ` C ) )
prstchom.e
|- ( ph -> H = ( Hom ` C ) )
prstchom.x
|- ( ph -> X e. ( Base ` C ) )
prstchom.y
|- ( ph -> Y e. ( Base ` C ) )
Assertion prstchom2
|- ( ph -> ( X .<_ Y <-> E! f f e. ( X H Y ) ) )

Proof

Step Hyp Ref Expression
1 prstcnid.c
 |-  ( ph -> C = ( ProsetToCat ` K ) )
2 prstcnid.k
 |-  ( ph -> K e. Proset )
3 prstchom.l
 |-  ( ph -> .<_ = ( le ` C ) )
4 prstchom.e
 |-  ( ph -> H = ( Hom ` C ) )
5 prstchom.x
 |-  ( ph -> X e. ( Base ` C ) )
6 prstchom.y
 |-  ( ph -> Y e. ( Base ` C ) )
7 1 2 3 4 5 6 prstchom
 |-  ( ph -> ( X .<_ Y <-> ( X H Y ) =/= (/) ) )
8 1 2 prstcthin
 |-  ( ph -> C e. ThinCat )
9 eqidd
 |-  ( ph -> ( Base ` C ) = ( Base ` C ) )
10 8 5 6 9 4 thincn0eu
 |-  ( ph -> ( ( X H Y ) =/= (/) <-> E! f f e. ( X H Y ) ) )
11 7 10 bitrd
 |-  ( ph -> ( X .<_ Y <-> E! f f e. ( X H Y ) ) )