Metamath Proof Explorer


Theorem prstchom2ALT

Description: Hom-sets of the constructed category are dependent on the preorder. This proof depends on the definition df-prstc . See prstchom2 for a version that does not depend on the definition. (Contributed by Zhi Wang, 20-Sep-2024) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses prstcnid.c
|- ( ph -> C = ( ProsetToCat ` K ) )
prstcnid.k
|- ( ph -> K e. Proset )
prstchom.l
|- ( ph -> .<_ = ( le ` C ) )
prstchom.e
|- ( ph -> H = ( Hom ` C ) )
Assertion prstchom2ALT
|- ( ph -> ( X .<_ Y <-> E! f f e. ( X H Y ) ) )

Proof

Step Hyp Ref Expression
1 prstcnid.c
 |-  ( ph -> C = ( ProsetToCat ` K ) )
2 prstcnid.k
 |-  ( ph -> K e. Proset )
3 prstchom.l
 |-  ( ph -> .<_ = ( le ` C ) )
4 prstchom.e
 |-  ( ph -> H = ( Hom ` C ) )
5 ovex
 |-  ( X H Y ) e. _V
6 1 2 3 prstchomval
 |-  ( ph -> ( .<_ X. { 1o } ) = ( Hom ` C ) )
7 4 6 eqtr4d
 |-  ( ph -> H = ( .<_ X. { 1o } ) )
8 1oex
 |-  1o e. _V
9 8 a1i
 |-  ( ph -> 1o e. _V )
10 1n0
 |-  1o =/= (/)
11 10 a1i
 |-  ( ph -> 1o =/= (/) )
12 7 9 11 fvconstr
 |-  ( ph -> ( X .<_ Y <-> ( X H Y ) = 1o ) )
13 12 biimpa
 |-  ( ( ph /\ X .<_ Y ) -> ( X H Y ) = 1o )
14 eqeng
 |-  ( ( X H Y ) e. _V -> ( ( X H Y ) = 1o -> ( X H Y ) ~~ 1o ) )
15 5 13 14 mpsyl
 |-  ( ( ph /\ X .<_ Y ) -> ( X H Y ) ~~ 1o )
16 euen1b
 |-  ( ( X H Y ) ~~ 1o <-> E! f f e. ( X H Y ) )
17 15 16 sylib
 |-  ( ( ph /\ X .<_ Y ) -> E! f f e. ( X H Y ) )
18 euex
 |-  ( E! f f e. ( X H Y ) -> E. f f e. ( X H Y ) )
19 n0
 |-  ( ( X H Y ) =/= (/) <-> E. f f e. ( X H Y ) )
20 18 19 sylibr
 |-  ( E! f f e. ( X H Y ) -> ( X H Y ) =/= (/) )
21 7 9 11 fvconstrn0
 |-  ( ph -> ( X .<_ Y <-> ( X H Y ) =/= (/) ) )
22 21 biimpar
 |-  ( ( ph /\ ( X H Y ) =/= (/) ) -> X .<_ Y )
23 20 22 sylan2
 |-  ( ( ph /\ E! f f e. ( X H Y ) ) -> X .<_ Y )
24 17 23 impbida
 |-  ( ph -> ( X .<_ Y <-> E! f f e. ( X H Y ) ) )