Step |
Hyp |
Ref |
Expression |
1 |
|
prstcnid.c |
|- ( ph -> C = ( ProsetToCat ` K ) ) |
2 |
|
prstcnid.k |
|- ( ph -> K e. Proset ) |
3 |
|
prstchom.l |
|- ( ph -> .<_ = ( le ` C ) ) |
4 |
|
prstchom.e |
|- ( ph -> H = ( Hom ` C ) ) |
5 |
|
ovex |
|- ( X H Y ) e. _V |
6 |
1 2 3
|
prstchomval |
|- ( ph -> ( .<_ X. { 1o } ) = ( Hom ` C ) ) |
7 |
4 6
|
eqtr4d |
|- ( ph -> H = ( .<_ X. { 1o } ) ) |
8 |
|
1oex |
|- 1o e. _V |
9 |
8
|
a1i |
|- ( ph -> 1o e. _V ) |
10 |
|
1n0 |
|- 1o =/= (/) |
11 |
10
|
a1i |
|- ( ph -> 1o =/= (/) ) |
12 |
7 9 11
|
fvconstr |
|- ( ph -> ( X .<_ Y <-> ( X H Y ) = 1o ) ) |
13 |
12
|
biimpa |
|- ( ( ph /\ X .<_ Y ) -> ( X H Y ) = 1o ) |
14 |
|
eqeng |
|- ( ( X H Y ) e. _V -> ( ( X H Y ) = 1o -> ( X H Y ) ~~ 1o ) ) |
15 |
5 13 14
|
mpsyl |
|- ( ( ph /\ X .<_ Y ) -> ( X H Y ) ~~ 1o ) |
16 |
|
euen1b |
|- ( ( X H Y ) ~~ 1o <-> E! f f e. ( X H Y ) ) |
17 |
15 16
|
sylib |
|- ( ( ph /\ X .<_ Y ) -> E! f f e. ( X H Y ) ) |
18 |
|
euex |
|- ( E! f f e. ( X H Y ) -> E. f f e. ( X H Y ) ) |
19 |
|
n0 |
|- ( ( X H Y ) =/= (/) <-> E. f f e. ( X H Y ) ) |
20 |
18 19
|
sylibr |
|- ( E! f f e. ( X H Y ) -> ( X H Y ) =/= (/) ) |
21 |
7 9 11
|
fvconstrn0 |
|- ( ph -> ( X .<_ Y <-> ( X H Y ) =/= (/) ) ) |
22 |
21
|
biimpar |
|- ( ( ph /\ ( X H Y ) =/= (/) ) -> X .<_ Y ) |
23 |
20 22
|
sylan2 |
|- ( ( ph /\ E! f f e. ( X H Y ) ) -> X .<_ Y ) |
24 |
17 23
|
impbida |
|- ( ph -> ( X .<_ Y <-> E! f f e. ( X H Y ) ) ) |