Metamath Proof Explorer


Theorem prstchom2ALT

Description: Hom-sets of the constructed category are dependent on the preorder. This proof depends on the definition df-prstc . See prstchom2 for a version that does not depend on the definition. (Contributed by Zhi Wang, 20-Sep-2024) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses prstcnid.c No typesetting found for |- ( ph -> C = ( ProsetToCat ` K ) ) with typecode |-
prstcnid.k φ K Proset
prstchom.l φ ˙ = C
prstchom.e φ H = Hom C
Assertion prstchom2ALT φ X ˙ Y ∃! f f X H Y

Proof

Step Hyp Ref Expression
1 prstcnid.c Could not format ( ph -> C = ( ProsetToCat ` K ) ) : No typesetting found for |- ( ph -> C = ( ProsetToCat ` K ) ) with typecode |-
2 prstcnid.k φ K Proset
3 prstchom.l φ ˙ = C
4 prstchom.e φ H = Hom C
5 ovex X H Y V
6 1 2 3 prstchomval φ ˙ × 1 𝑜 = Hom C
7 4 6 eqtr4d φ H = ˙ × 1 𝑜
8 1oex 1 𝑜 V
9 8 a1i φ 1 𝑜 V
10 1n0 1 𝑜
11 10 a1i φ 1 𝑜
12 7 9 11 fvconstr φ X ˙ Y X H Y = 1 𝑜
13 12 biimpa φ X ˙ Y X H Y = 1 𝑜
14 eqeng X H Y V X H Y = 1 𝑜 X H Y 1 𝑜
15 5 13 14 mpsyl φ X ˙ Y X H Y 1 𝑜
16 euen1b X H Y 1 𝑜 ∃! f f X H Y
17 15 16 sylib φ X ˙ Y ∃! f f X H Y
18 euex ∃! f f X H Y f f X H Y
19 n0 X H Y f f X H Y
20 18 19 sylibr ∃! f f X H Y X H Y
21 7 9 11 fvconstrn0 φ X ˙ Y X H Y
22 21 biimpar φ X H Y X ˙ Y
23 20 22 sylan2 φ ∃! f f X H Y X ˙ Y
24 17 23 impbida φ X ˙ Y ∃! f f X H Y