Metamath Proof Explorer


Theorem fvconstrn0

Description: Two ways of expressing A R B . (Contributed by Zhi Wang, 20-Sep-2024)

Ref Expression
Hypotheses fvconstr.1 φF=R×Y
fvconstr.2 φYV
fvconstr.3 φY
Assertion fvconstrn0 φARBAFB

Proof

Step Hyp Ref Expression
1 fvconstr.1 φF=R×Y
2 fvconstr.2 φYV
3 fvconstr.3 φY
4 df-br ARBABR
5 1 oveqd φAFB=AR×YB
6 df-ov AR×YB=R×YAB
7 5 6 eqtrdi φAFB=R×YAB
8 7 adantr φABRAFB=R×YAB
9 fvconst2g YVABRR×YAB=Y
10 2 9 sylan φABRR×YAB=Y
11 8 10 eqtrd φABRAFB=Y
12 3 adantr φABRY
13 11 12 eqnetrd φABRAFB
14 7 neeq1d φAFBR×YAB
15 14 biimpa φAFBR×YAB
16 dmxpss domR×YR
17 ndmfv ¬ABdomR×YR×YAB=
18 17 necon1ai R×YABABdomR×Y
19 16 18 sselid R×YABABR
20 15 19 syl φAFBABR
21 13 20 impbida φABRAFB
22 4 21 bitrid φARBAFB