Metamath Proof Explorer


Theorem fvconstr2

Description: Two ways of expressing A R B . (Contributed by Zhi Wang, 18-Sep-2024)

Ref Expression
Hypotheses fvconstr.1 φF=R×Y
fvconstr2.2 φXAFB
Assertion fvconstr2 φARB

Proof

Step Hyp Ref Expression
1 fvconstr.1 φF=R×Y
2 fvconstr2.2 φXAFB
3 2 ne0d φAFB
4 1 oveqd φAFB=AR×YB
5 df-ov AR×YB=R×YAB
6 4 5 eqtrdi φAFB=R×YAB
7 6 neeq1d φAFBR×YAB
8 dmxpss domR×YR
9 ndmfv ¬ABdomR×YR×YAB=
10 9 necon1ai R×YABABdomR×Y
11 8 10 sselid R×YABABR
12 7 11 syl6bi φAFBABR
13 3 12 mpd φABR
14 df-br ARBABR
15 13 14 sylibr φARB