Metamath Proof Explorer


Definition df-prstc

Description: Definition of the function converting a preordered set to a category. Justified by prsthinc .

This definition is somewhat arbitrary. Example 3.3(4.d) of Adamek p. 24 demonstrates an alternate definition with pairwise disjoint hom-sets. The behavior of the function is defined entirely, up to isomorphism, by prstcnid , prstchom , and prstcthin . Other important properties include prstcbas , prstcleval , prstcle , prstcocval , prstcoc , prstchom2 , and prstcprs . Use those instead.

Note that the defining property prstchom is equivalent to prstchom2 given prstcthin . See thincn0eu for justification.

"ProsetToCat" was taken instead of "ProsetCat" because the latter might mean the category of preordered sets (classes). However, "ProsetToCat" seems too long. (Contributed by Zhi Wang, 20-Sep-2024) (New usage is discouraged.)

Ref Expression
Assertion df-prstc Could not format assertion : No typesetting found for |- ProsetToCat = ( k e. Proset |-> ( ( k sSet <. ( Hom ` ndx ) , ( ( le ` k ) X. { 1o } ) >. ) sSet <. ( comp ` ndx ) , (/) >. ) ) with typecode |-

Detailed syntax breakdown

Step Hyp Ref Expression
0 cprstc Could not format ProsetToCat : No typesetting found for class ProsetToCat with typecode class
1 vk setvar k
2 cproset class Proset
3 1 cv setvar k
4 csts class sSet
5 chom class Hom
6 cnx class ndx
7 6 5 cfv class Hom ndx
8 cple class le
9 3 8 cfv class k
10 c1o class 1 𝑜
11 10 csn class 1 𝑜
12 9 11 cxp class k × 1 𝑜
13 7 12 cop class Hom ndx k × 1 𝑜
14 3 13 4 co class k sSet Hom ndx k × 1 𝑜
15 cco class comp
16 6 15 cfv class comp ndx
17 c0 class
18 16 17 cop class comp ndx
19 14 18 4 co class k sSet Hom ndx k × 1 𝑜 sSet comp ndx
20 1 2 19 cmpt class k Proset k sSet Hom ndx k × 1 𝑜 sSet comp ndx
21 0 20 wceq Could not format ProsetToCat = ( k e. Proset |-> ( ( k sSet <. ( Hom ` ndx ) , ( ( le ` k ) X. { 1o } ) >. ) sSet <. ( comp ` ndx ) , (/) >. ) ) : No typesetting found for wff ProsetToCat = ( k e. Proset |-> ( ( k sSet <. ( Hom ` ndx ) , ( ( le ` k ) X. { 1o } ) >. ) sSet <. ( comp ` ndx ) , (/) >. ) ) with typecode wff