Metamath Proof Explorer


Theorem prstchom

Description: Hom-sets of the constructed category are dependent on the preorder.

Note that prstchom.x and prstchom.y are redundant here due to our definition of ProsetToCat . However, this should not be assumed as it is definition-dependent. Therefore, the two hypotheses are added for explicitness. (Contributed by Zhi Wang, 20-Sep-2024)

Ref Expression
Hypotheses prstcnid.c No typesetting found for |- ( ph -> C = ( ProsetToCat ` K ) ) with typecode |-
prstcnid.k φ K Proset
prstchom.l φ ˙ = C
prstchom.e φ H = Hom C
prstchom.x φ X Base C
prstchom.y φ Y Base C
Assertion prstchom φ X ˙ Y X H Y

Proof

Step Hyp Ref Expression
1 prstcnid.c Could not format ( ph -> C = ( ProsetToCat ` K ) ) : No typesetting found for |- ( ph -> C = ( ProsetToCat ` K ) ) with typecode |-
2 prstcnid.k φ K Proset
3 prstchom.l φ ˙ = C
4 prstchom.e φ H = Hom C
5 prstchom.x φ X Base C
6 prstchom.y φ Y Base C
7 1 2 3 prstchomval φ ˙ × 1 𝑜 = Hom C
8 4 7 eqtr4d φ H = ˙ × 1 𝑜
9 1oex 1 𝑜 V
10 9 a1i φ 1 𝑜 V
11 1n0 1 𝑜
12 11 a1i φ 1 𝑜
13 8 10 12 fvconstrn0 φ X ˙ Y X H Y