Metamath Proof Explorer


Theorem prstchom

Description: Hom-sets of the constructed category are dependent on the preorder.

Note that prstchom.x and prstchom.y are redundant here due to our definition of ProsetToCat . However, this should not be assumed as it is definition-dependent. Therefore, the two hypotheses are added for explicitness. (Contributed by Zhi Wang, 20-Sep-2024)

Ref Expression
Hypotheses prstcnid.c
|- ( ph -> C = ( ProsetToCat ` K ) )
prstcnid.k
|- ( ph -> K e. Proset )
prstchom.l
|- ( ph -> .<_ = ( le ` C ) )
prstchom.e
|- ( ph -> H = ( Hom ` C ) )
prstchom.x
|- ( ph -> X e. ( Base ` C ) )
prstchom.y
|- ( ph -> Y e. ( Base ` C ) )
Assertion prstchom
|- ( ph -> ( X .<_ Y <-> ( X H Y ) =/= (/) ) )

Proof

Step Hyp Ref Expression
1 prstcnid.c
 |-  ( ph -> C = ( ProsetToCat ` K ) )
2 prstcnid.k
 |-  ( ph -> K e. Proset )
3 prstchom.l
 |-  ( ph -> .<_ = ( le ` C ) )
4 prstchom.e
 |-  ( ph -> H = ( Hom ` C ) )
5 prstchom.x
 |-  ( ph -> X e. ( Base ` C ) )
6 prstchom.y
 |-  ( ph -> Y e. ( Base ` C ) )
7 1 2 3 prstchomval
 |-  ( ph -> ( .<_ X. { 1o } ) = ( Hom ` C ) )
8 4 7 eqtr4d
 |-  ( ph -> H = ( .<_ X. { 1o } ) )
9 1oex
 |-  1o e. _V
10 9 a1i
 |-  ( ph -> 1o e. _V )
11 1n0
 |-  1o =/= (/)
12 11 a1i
 |-  ( ph -> 1o =/= (/) )
13 8 10 12 fvconstrn0
 |-  ( ph -> ( X .<_ Y <-> ( X H Y ) =/= (/) ) )