Metamath Proof Explorer


Theorem fvconstr

Description: Two ways of expressing A R B . (Contributed by Zhi Wang, 18-Sep-2024)

Ref Expression
Hypotheses fvconstr.1 φF=R×Y
fvconstr.2 φYV
fvconstr.3 φY
Assertion fvconstr φARBAFB=Y

Proof

Step Hyp Ref Expression
1 fvconstr.1 φF=R×Y
2 fvconstr.2 φYV
3 fvconstr.3 φY
4 df-br ARBABR
5 1 oveqd φAFB=AR×YB
6 df-ov AR×YB=R×YAB
7 5 6 eqtrdi φAFB=R×YAB
8 7 adantr φABRAFB=R×YAB
9 fvconst2g YVABRR×YAB=Y
10 2 9 sylan φABRR×YAB=Y
11 8 10 eqtrd φABRAFB=Y
12 simpr φAFB=YAFB=Y
13 3 adantr φAFB=YY
14 12 13 eqnetrd φAFB=YAFB
15 7 neeq1d φAFBR×YAB
16 15 adantr φAFB=YAFBR×YAB
17 14 16 mpbid φAFB=YR×YAB
18 dmxpss domR×YR
19 ndmfv ¬ABdomR×YR×YAB=
20 19 necon1ai R×YABABdomR×Y
21 18 20 sselid R×YABABR
22 17 21 syl φAFB=YABR
23 11 22 impbida φABRAFB=Y
24 4 23 bitrid φARBAFB=Y