Step |
Hyp |
Ref |
Expression |
1 |
|
postc.c |
|- ( ph -> C = ( ProsetToCat ` K ) ) |
2 |
|
postc.k |
|- ( ph -> K e. Proset ) |
3 |
1 2
|
prstcprs |
|- ( ph -> C e. Proset ) |
4 |
|
eqidd |
|- ( ph -> ( Base ` K ) = ( Base ` K ) ) |
5 |
1 2 4
|
prstcbas |
|- ( ph -> ( Base ` K ) = ( Base ` C ) ) |
6 |
|
eqidd |
|- ( ph -> ( le ` K ) = ( le ` K ) ) |
7 |
1 2 6
|
prstcle |
|- ( ph -> ( x ( le ` K ) y <-> x ( le ` C ) y ) ) |
8 |
7
|
adantr |
|- ( ( ph /\ ( x e. ( Base ` K ) /\ y e. ( Base ` K ) ) ) -> ( x ( le ` K ) y <-> x ( le ` C ) y ) ) |
9 |
2 3 4 5 8
|
pospropd |
|- ( ph -> ( K e. Poset <-> C e. Poset ) ) |