Description: The converted category is a poset iff the original proset is a poset. (Contributed by Zhi Wang, 26-Sep-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | postc.c | ⊢ ( 𝜑 → 𝐶 = ( ProsetToCat ‘ 𝐾 ) ) | |
postc.k | ⊢ ( 𝜑 → 𝐾 ∈ Proset ) | ||
Assertion | postcpos | ⊢ ( 𝜑 → ( 𝐾 ∈ Poset ↔ 𝐶 ∈ Poset ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | postc.c | ⊢ ( 𝜑 → 𝐶 = ( ProsetToCat ‘ 𝐾 ) ) | |
2 | postc.k | ⊢ ( 𝜑 → 𝐾 ∈ Proset ) | |
3 | 1 2 | prstcprs | ⊢ ( 𝜑 → 𝐶 ∈ Proset ) |
4 | eqidd | ⊢ ( 𝜑 → ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) ) | |
5 | 1 2 4 | prstcbas | ⊢ ( 𝜑 → ( Base ‘ 𝐾 ) = ( Base ‘ 𝐶 ) ) |
6 | eqidd | ⊢ ( 𝜑 → ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) ) | |
7 | 1 2 6 | prstcle | ⊢ ( 𝜑 → ( 𝑥 ( le ‘ 𝐾 ) 𝑦 ↔ 𝑥 ( le ‘ 𝐶 ) 𝑦 ) ) |
8 | 7 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐾 ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) ) → ( 𝑥 ( le ‘ 𝐾 ) 𝑦 ↔ 𝑥 ( le ‘ 𝐶 ) 𝑦 ) ) |
9 | 2 3 4 5 8 | pospropd | ⊢ ( 𝜑 → ( 𝐾 ∈ Poset ↔ 𝐶 ∈ Poset ) ) |