Metamath Proof Explorer


Theorem postcpos

Description: The converted category is a poset iff the original proset is a poset. (Contributed by Zhi Wang, 26-Sep-2024)

Ref Expression
Hypotheses postc.c ( 𝜑𝐶 = ( ProsetToCat ‘ 𝐾 ) )
postc.k ( 𝜑𝐾 ∈ Proset )
Assertion postcpos ( 𝜑 → ( 𝐾 ∈ Poset ↔ 𝐶 ∈ Poset ) )

Proof

Step Hyp Ref Expression
1 postc.c ( 𝜑𝐶 = ( ProsetToCat ‘ 𝐾 ) )
2 postc.k ( 𝜑𝐾 ∈ Proset )
3 1 2 prstcprs ( 𝜑𝐶 ∈ Proset )
4 eqidd ( 𝜑 → ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) )
5 1 2 4 prstcbas ( 𝜑 → ( Base ‘ 𝐾 ) = ( Base ‘ 𝐶 ) )
6 eqidd ( 𝜑 → ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) )
7 1 2 6 prstcle ( 𝜑 → ( 𝑥 ( le ‘ 𝐾 ) 𝑦𝑥 ( le ‘ 𝐶 ) 𝑦 ) )
8 7 adantr ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐾 ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) ) → ( 𝑥 ( le ‘ 𝐾 ) 𝑦𝑥 ( le ‘ 𝐶 ) 𝑦 ) )
9 2 3 4 5 8 pospropd ( 𝜑 → ( 𝐾 ∈ Poset ↔ 𝐶 ∈ Poset ) )