Step |
Hyp |
Ref |
Expression |
1 |
|
postc.c |
⊢ ( 𝜑 → 𝐶 = ( ProsetToCat ‘ 𝐾 ) ) |
2 |
|
postc.k |
⊢ ( 𝜑 → 𝐾 ∈ Proset ) |
3 |
|
eqidd |
⊢ ( 𝜑 → ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) ) |
4 |
1 2 3
|
prstcbas |
⊢ ( 𝜑 → ( Base ‘ 𝐾 ) = ( Base ‘ 𝐶 ) ) |
5 |
|
eqidd |
⊢ ( 𝜑 → ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) ) |
6 |
1 2 5
|
prstcle |
⊢ ( 𝜑 → ( 𝑥 ( le ‘ 𝐾 ) 𝑦 ↔ 𝑥 ( le ‘ 𝐶 ) 𝑦 ) ) |
7 |
1 2 5
|
prstcle |
⊢ ( 𝜑 → ( 𝑦 ( le ‘ 𝐾 ) 𝑥 ↔ 𝑦 ( le ‘ 𝐶 ) 𝑥 ) ) |
8 |
6 7
|
anbi12d |
⊢ ( 𝜑 → ( ( 𝑥 ( le ‘ 𝐾 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐾 ) 𝑥 ) ↔ ( 𝑥 ( le ‘ 𝐶 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐶 ) 𝑥 ) ) ) |
9 |
8
|
imbi1d |
⊢ ( 𝜑 → ( ( ( 𝑥 ( le ‘ 𝐾 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐾 ) 𝑥 ) → 𝑥 = 𝑦 ) ↔ ( ( 𝑥 ( le ‘ 𝐶 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐶 ) 𝑥 ) → 𝑥 = 𝑦 ) ) ) |
10 |
4 9
|
raleqbidvv |
⊢ ( 𝜑 → ( ∀ 𝑦 ∈ ( Base ‘ 𝐾 ) ( ( 𝑥 ( le ‘ 𝐾 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐾 ) 𝑥 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( ( 𝑥 ( le ‘ 𝐶 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐶 ) 𝑥 ) → 𝑥 = 𝑦 ) ) ) |
11 |
4 10
|
raleqbidvv |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ( Base ‘ 𝐾 ) ∀ 𝑦 ∈ ( Base ‘ 𝐾 ) ( ( 𝑥 ( le ‘ 𝐾 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐾 ) 𝑥 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( ( 𝑥 ( le ‘ 𝐶 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐶 ) 𝑥 ) → 𝑥 = 𝑦 ) ) ) |
12 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
13 |
|
eqid |
⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) |
14 |
12 13
|
ispos2 |
⊢ ( 𝐾 ∈ Poset ↔ ( 𝐾 ∈ Proset ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐾 ) ∀ 𝑦 ∈ ( Base ‘ 𝐾 ) ( ( 𝑥 ( le ‘ 𝐾 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐾 ) 𝑥 ) → 𝑥 = 𝑦 ) ) ) |
15 |
14
|
baib |
⊢ ( 𝐾 ∈ Proset → ( 𝐾 ∈ Poset ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐾 ) ∀ 𝑦 ∈ ( Base ‘ 𝐾 ) ( ( 𝑥 ( le ‘ 𝐾 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐾 ) 𝑥 ) → 𝑥 = 𝑦 ) ) ) |
16 |
2 15
|
syl |
⊢ ( 𝜑 → ( 𝐾 ∈ Poset ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐾 ) ∀ 𝑦 ∈ ( Base ‘ 𝐾 ) ( ( 𝑥 ( le ‘ 𝐾 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐾 ) 𝑥 ) → 𝑥 = 𝑦 ) ) ) |
17 |
1 2
|
prstcprs |
⊢ ( 𝜑 → 𝐶 ∈ Proset ) |
18 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
19 |
|
eqid |
⊢ ( le ‘ 𝐶 ) = ( le ‘ 𝐶 ) |
20 |
18 19
|
ispos2 |
⊢ ( 𝐶 ∈ Poset ↔ ( 𝐶 ∈ Proset ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( ( 𝑥 ( le ‘ 𝐶 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐶 ) 𝑥 ) → 𝑥 = 𝑦 ) ) ) |
21 |
20
|
baib |
⊢ ( 𝐶 ∈ Proset → ( 𝐶 ∈ Poset ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( ( 𝑥 ( le ‘ 𝐶 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐶 ) 𝑥 ) → 𝑥 = 𝑦 ) ) ) |
22 |
17 21
|
syl |
⊢ ( 𝜑 → ( 𝐶 ∈ Poset ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( ( 𝑥 ( le ‘ 𝐶 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐶 ) 𝑥 ) → 𝑥 = 𝑦 ) ) ) |
23 |
11 16 22
|
3bitr4d |
⊢ ( 𝜑 → ( 𝐾 ∈ Poset ↔ 𝐶 ∈ Poset ) ) |