Metamath Proof Explorer
		
		
		
		Description:  Version of raleqbidv with additional disjoint variable conditions, not
       requiring ax-8 nor df-clel .  (Contributed by BJ, 22-Sep-2024)
		
			
				
					 | 
					 | 
					Ref | 
					Expression | 
				
					
						 | 
						Hypotheses | 
						raleqbidvv.1 | 
						⊢ ( 𝜑  →  𝐴  =  𝐵 )  | 
					
					
						 | 
						 | 
						raleqbidvv.2 | 
						⊢ ( 𝜑  →  ( 𝜓  ↔  𝜒 ) )  | 
					
				
					 | 
					Assertion | 
					raleqbidvv | 
					⊢  ( 𝜑  →  ( ∀ 𝑥  ∈  𝐴 𝜓  ↔  ∀ 𝑥  ∈  𝐵 𝜒 ) )  | 
				
			
		
		
			
				Proof
				
					
						| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							raleqbidvv.1 | 
							⊢ ( 𝜑  →  𝐴  =  𝐵 )  | 
						
						
							| 2 | 
							
								
							 | 
							raleqbidvv.2 | 
							⊢ ( 𝜑  →  ( 𝜓  ↔  𝜒 ) )  | 
						
						
							| 3 | 
							
								2
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( 𝜓  ↔  𝜒 ) )  | 
						
						
							| 4 | 
							
								1 3
							 | 
							raleqbidva | 
							⊢ ( 𝜑  →  ( ∀ 𝑥  ∈  𝐴 𝜓  ↔  ∀ 𝑥  ∈  𝐵 𝜒 ) )  |