Metamath Proof Explorer


Theorem raleqbidvv

Description: Version of raleqbidv with additional disjoint variable conditions, not requiring ax-8 nor df-clel . (Contributed by BJ, 22-Sep-2024)

Ref Expression
Hypotheses raleqbidvv.1 ( 𝜑𝐴 = 𝐵 )
raleqbidvv.2 ( 𝜑 → ( 𝜓𝜒 ) )
Assertion raleqbidvv ( 𝜑 → ( ∀ 𝑥𝐴 𝜓 ↔ ∀ 𝑥𝐵 𝜒 ) )

Proof

Step Hyp Ref Expression
1 raleqbidvv.1 ( 𝜑𝐴 = 𝐵 )
2 raleqbidvv.2 ( 𝜑 → ( 𝜓𝜒 ) )
3 2 alrimiv ( 𝜑 → ∀ 𝑥 ( 𝜓𝜒 ) )
4 dfcleq ( 𝐴 = 𝐵 ↔ ∀ 𝑥 ( 𝑥𝐴𝑥𝐵 ) )
5 1 4 sylib ( 𝜑 → ∀ 𝑥 ( 𝑥𝐴𝑥𝐵 ) )
6 19.26 ( ∀ 𝑥 ( ( 𝜓𝜒 ) ∧ ( 𝑥𝐴𝑥𝐵 ) ) ↔ ( ∀ 𝑥 ( 𝜓𝜒 ) ∧ ∀ 𝑥 ( 𝑥𝐴𝑥𝐵 ) ) )
7 3 5 6 sylanbrc ( 𝜑 → ∀ 𝑥 ( ( 𝜓𝜒 ) ∧ ( 𝑥𝐴𝑥𝐵 ) ) )
8 imbi12 ( ( 𝑥𝐴𝑥𝐵 ) → ( ( 𝜓𝜒 ) → ( ( 𝑥𝐴𝜓 ) ↔ ( 𝑥𝐵𝜒 ) ) ) )
9 8 impcom ( ( ( 𝜓𝜒 ) ∧ ( 𝑥𝐴𝑥𝐵 ) ) → ( ( 𝑥𝐴𝜓 ) ↔ ( 𝑥𝐵𝜒 ) ) )
10 7 9 sylg ( 𝜑 → ∀ 𝑥 ( ( 𝑥𝐴𝜓 ) ↔ ( 𝑥𝐵𝜒 ) ) )
11 albi ( ∀ 𝑥 ( ( 𝑥𝐴𝜓 ) ↔ ( 𝑥𝐵𝜒 ) ) → ( ∀ 𝑥 ( 𝑥𝐴𝜓 ) ↔ ∀ 𝑥 ( 𝑥𝐵𝜒 ) ) )
12 10 11 syl ( 𝜑 → ( ∀ 𝑥 ( 𝑥𝐴𝜓 ) ↔ ∀ 𝑥 ( 𝑥𝐵𝜒 ) ) )
13 df-ral ( ∀ 𝑥𝐴 𝜓 ↔ ∀ 𝑥 ( 𝑥𝐴𝜓 ) )
14 df-ral ( ∀ 𝑥𝐵 𝜒 ↔ ∀ 𝑥 ( 𝑥𝐵𝜒 ) )
15 12 13 14 3bitr4g ( 𝜑 → ( ∀ 𝑥𝐴 𝜓 ↔ ∀ 𝑥𝐵 𝜒 ) )