Metamath Proof Explorer


Theorem postc

Description: The converted category is a poset iff no distinct objects are isomorphic. (Contributed by Zhi Wang, 25-Sep-2024)

Ref Expression
Hypotheses postc.c ( 𝜑𝐶 = ( ProsetToCat ‘ 𝐾 ) )
postc.k ( 𝜑𝐾 ∈ Proset )
postc.b 𝐵 = ( Base ‘ 𝐶 )
Assertion postc ( 𝜑 → ( 𝐶 ∈ Poset ↔ ∀ 𝑥𝐵𝑦𝐵 ( 𝑥 ( ≃𝑐𝐶 ) 𝑦𝑥 = 𝑦 ) ) )

Proof

Step Hyp Ref Expression
1 postc.c ( 𝜑𝐶 = ( ProsetToCat ‘ 𝐾 ) )
2 postc.k ( 𝜑𝐾 ∈ Proset )
3 postc.b 𝐵 = ( Base ‘ 𝐶 )
4 1 2 prstcprs ( 𝜑𝐶 ∈ Proset )
5 eqid ( le ‘ 𝐶 ) = ( le ‘ 𝐶 )
6 3 5 ispos2 ( 𝐶 ∈ Poset ↔ ( 𝐶 ∈ Proset ∧ ∀ 𝑥𝐵𝑦𝐵 ( ( 𝑥 ( le ‘ 𝐶 ) 𝑦𝑦 ( le ‘ 𝐶 ) 𝑥 ) → 𝑥 = 𝑦 ) ) )
7 6 baib ( 𝐶 ∈ Proset → ( 𝐶 ∈ Poset ↔ ∀ 𝑥𝐵𝑦𝐵 ( ( 𝑥 ( le ‘ 𝐶 ) 𝑦𝑦 ( le ‘ 𝐶 ) 𝑥 ) → 𝑥 = 𝑦 ) ) )
8 4 7 syl ( 𝜑 → ( 𝐶 ∈ Poset ↔ ∀ 𝑥𝐵𝑦𝐵 ( ( 𝑥 ( le ‘ 𝐶 ) 𝑦𝑦 ( le ‘ 𝐶 ) 𝑥 ) → 𝑥 = 𝑦 ) ) )
9 1 adantr ( ( 𝜑 ∧ ( 𝑥𝐵𝑦𝐵 ) ) → 𝐶 = ( ProsetToCat ‘ 𝐾 ) )
10 2 adantr ( ( 𝜑 ∧ ( 𝑥𝐵𝑦𝐵 ) ) → 𝐾 ∈ Proset )
11 9 10 prstcthin ( ( 𝜑 ∧ ( 𝑥𝐵𝑦𝐵 ) ) → 𝐶 ∈ ThinCat )
12 simprl ( ( 𝜑 ∧ ( 𝑥𝐵𝑦𝐵 ) ) → 𝑥𝐵 )
13 simprr ( ( 𝜑 ∧ ( 𝑥𝐵𝑦𝐵 ) ) → 𝑦𝐵 )
14 eqid ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 )
15 11 3 12 13 14 thinccic ( ( 𝜑 ∧ ( 𝑥𝐵𝑦𝐵 ) ) → ( 𝑥 ( ≃𝑐𝐶 ) 𝑦 ↔ ( ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ≠ ∅ ∧ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ≠ ∅ ) ) )
16 eqidd ( ( 𝜑 ∧ ( 𝑥𝐵𝑦𝐵 ) ) → ( le ‘ 𝐶 ) = ( le ‘ 𝐶 ) )
17 eqidd ( ( 𝜑 ∧ ( 𝑥𝐵𝑦𝐵 ) ) → ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) )
18 12 3 eleqtrdi ( ( 𝜑 ∧ ( 𝑥𝐵𝑦𝐵 ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) )
19 13 3 eleqtrdi ( ( 𝜑 ∧ ( 𝑥𝐵𝑦𝐵 ) ) → 𝑦 ∈ ( Base ‘ 𝐶 ) )
20 9 10 16 17 18 19 prstchom ( ( 𝜑 ∧ ( 𝑥𝐵𝑦𝐵 ) ) → ( 𝑥 ( le ‘ 𝐶 ) 𝑦 ↔ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ≠ ∅ ) )
21 9 10 16 17 19 18 prstchom ( ( 𝜑 ∧ ( 𝑥𝐵𝑦𝐵 ) ) → ( 𝑦 ( le ‘ 𝐶 ) 𝑥 ↔ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ≠ ∅ ) )
22 20 21 anbi12d ( ( 𝜑 ∧ ( 𝑥𝐵𝑦𝐵 ) ) → ( ( 𝑥 ( le ‘ 𝐶 ) 𝑦𝑦 ( le ‘ 𝐶 ) 𝑥 ) ↔ ( ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ≠ ∅ ∧ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ≠ ∅ ) ) )
23 15 22 bitr4d ( ( 𝜑 ∧ ( 𝑥𝐵𝑦𝐵 ) ) → ( 𝑥 ( ≃𝑐𝐶 ) 𝑦 ↔ ( 𝑥 ( le ‘ 𝐶 ) 𝑦𝑦 ( le ‘ 𝐶 ) 𝑥 ) ) )
24 23 imbi1d ( ( 𝜑 ∧ ( 𝑥𝐵𝑦𝐵 ) ) → ( ( 𝑥 ( ≃𝑐𝐶 ) 𝑦𝑥 = 𝑦 ) ↔ ( ( 𝑥 ( le ‘ 𝐶 ) 𝑦𝑦 ( le ‘ 𝐶 ) 𝑥 ) → 𝑥 = 𝑦 ) ) )
25 24 2ralbidva ( 𝜑 → ( ∀ 𝑥𝐵𝑦𝐵 ( 𝑥 ( ≃𝑐𝐶 ) 𝑦𝑥 = 𝑦 ) ↔ ∀ 𝑥𝐵𝑦𝐵 ( ( 𝑥 ( le ‘ 𝐶 ) 𝑦𝑦 ( le ‘ 𝐶 ) 𝑥 ) → 𝑥 = 𝑦 ) ) )
26 8 25 bitr4d ( 𝜑 → ( 𝐶 ∈ Poset ↔ ∀ 𝑥𝐵𝑦𝐵 ( 𝑥 ( ≃𝑐𝐶 ) 𝑦𝑥 = 𝑦 ) ) )