Step |
Hyp |
Ref |
Expression |
1 |
|
postc.c |
⊢ ( 𝜑 → 𝐶 = ( ProsetToCat ‘ 𝐾 ) ) |
2 |
|
postc.k |
⊢ ( 𝜑 → 𝐾 ∈ Proset ) |
3 |
|
postc.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
4 |
1 2
|
prstcprs |
⊢ ( 𝜑 → 𝐶 ∈ Proset ) |
5 |
|
eqid |
⊢ ( le ‘ 𝐶 ) = ( le ‘ 𝐶 ) |
6 |
3 5
|
ispos2 |
⊢ ( 𝐶 ∈ Poset ↔ ( 𝐶 ∈ Proset ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 ( le ‘ 𝐶 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐶 ) 𝑥 ) → 𝑥 = 𝑦 ) ) ) |
7 |
6
|
baib |
⊢ ( 𝐶 ∈ Proset → ( 𝐶 ∈ Poset ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 ( le ‘ 𝐶 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐶 ) 𝑥 ) → 𝑥 = 𝑦 ) ) ) |
8 |
4 7
|
syl |
⊢ ( 𝜑 → ( 𝐶 ∈ Poset ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 ( le ‘ 𝐶 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐶 ) 𝑥 ) → 𝑥 = 𝑦 ) ) ) |
9 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝐶 = ( ProsetToCat ‘ 𝐾 ) ) |
10 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝐾 ∈ Proset ) |
11 |
9 10
|
prstcthin |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝐶 ∈ ThinCat ) |
12 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑥 ∈ 𝐵 ) |
13 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑦 ∈ 𝐵 ) |
14 |
|
eqid |
⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) |
15 |
11 3 12 13 14
|
thinccic |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( ≃𝑐 ‘ 𝐶 ) 𝑦 ↔ ( ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ≠ ∅ ∧ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ≠ ∅ ) ) ) |
16 |
|
eqidd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( le ‘ 𝐶 ) = ( le ‘ 𝐶 ) ) |
17 |
|
eqidd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) ) |
18 |
12 3
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) |
19 |
13 3
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑦 ∈ ( Base ‘ 𝐶 ) ) |
20 |
9 10 16 17 18 19
|
prstchom |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( le ‘ 𝐶 ) 𝑦 ↔ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ≠ ∅ ) ) |
21 |
9 10 16 17 19 18
|
prstchom |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑦 ( le ‘ 𝐶 ) 𝑥 ↔ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ≠ ∅ ) ) |
22 |
20 21
|
anbi12d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑥 ( le ‘ 𝐶 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐶 ) 𝑥 ) ↔ ( ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ≠ ∅ ∧ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ≠ ∅ ) ) ) |
23 |
15 22
|
bitr4d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( ≃𝑐 ‘ 𝐶 ) 𝑦 ↔ ( 𝑥 ( le ‘ 𝐶 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐶 ) 𝑥 ) ) ) |
24 |
23
|
imbi1d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑥 ( ≃𝑐 ‘ 𝐶 ) 𝑦 → 𝑥 = 𝑦 ) ↔ ( ( 𝑥 ( le ‘ 𝐶 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐶 ) 𝑥 ) → 𝑥 = 𝑦 ) ) ) |
25 |
24
|
2ralbidva |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ( ≃𝑐 ‘ 𝐶 ) 𝑦 → 𝑥 = 𝑦 ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 ( le ‘ 𝐶 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐶 ) 𝑥 ) → 𝑥 = 𝑦 ) ) ) |
26 |
8 25
|
bitr4d |
⊢ ( 𝜑 → ( 𝐶 ∈ Poset ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ( ≃𝑐 ‘ 𝐶 ) 𝑦 → 𝑥 = 𝑦 ) ) ) |