Metamath Proof Explorer


Theorem ispos2

Description: A poset is an antisymmetric proset.

EDITORIAL: could become the definition of poset. (Contributed by Stefan O'Rear, 1-Feb-2015)

Ref Expression
Hypotheses ispos2.b 𝐵 = ( Base ‘ 𝐾 )
ispos2.l = ( le ‘ 𝐾 )
Assertion ispos2 ( 𝐾 ∈ Poset ↔ ( 𝐾 ∈ Proset ∧ ∀ 𝑥𝐵𝑦𝐵 ( ( 𝑥 𝑦𝑦 𝑥 ) → 𝑥 = 𝑦 ) ) )

Proof

Step Hyp Ref Expression
1 ispos2.b 𝐵 = ( Base ‘ 𝐾 )
2 ispos2.l = ( le ‘ 𝐾 )
3 3anan32 ( ( 𝑥 𝑥 ∧ ( ( 𝑥 𝑦𝑦 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 𝑦𝑦 𝑧 ) → 𝑥 𝑧 ) ) ↔ ( ( 𝑥 𝑥 ∧ ( ( 𝑥 𝑦𝑦 𝑧 ) → 𝑥 𝑧 ) ) ∧ ( ( 𝑥 𝑦𝑦 𝑥 ) → 𝑥 = 𝑦 ) ) )
4 3 ralbii ( ∀ 𝑧𝐵 ( 𝑥 𝑥 ∧ ( ( 𝑥 𝑦𝑦 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 𝑦𝑦 𝑧 ) → 𝑥 𝑧 ) ) ↔ ∀ 𝑧𝐵 ( ( 𝑥 𝑥 ∧ ( ( 𝑥 𝑦𝑦 𝑧 ) → 𝑥 𝑧 ) ) ∧ ( ( 𝑥 𝑦𝑦 𝑥 ) → 𝑥 = 𝑦 ) ) )
5 r19.26 ( ∀ 𝑧𝐵 ( ( 𝑥 𝑥 ∧ ( ( 𝑥 𝑦𝑦 𝑧 ) → 𝑥 𝑧 ) ) ∧ ( ( 𝑥 𝑦𝑦 𝑥 ) → 𝑥 = 𝑦 ) ) ↔ ( ∀ 𝑧𝐵 ( 𝑥 𝑥 ∧ ( ( 𝑥 𝑦𝑦 𝑧 ) → 𝑥 𝑧 ) ) ∧ ∀ 𝑧𝐵 ( ( 𝑥 𝑦𝑦 𝑥 ) → 𝑥 = 𝑦 ) ) )
6 4 5 bitri ( ∀ 𝑧𝐵 ( 𝑥 𝑥 ∧ ( ( 𝑥 𝑦𝑦 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 𝑦𝑦 𝑧 ) → 𝑥 𝑧 ) ) ↔ ( ∀ 𝑧𝐵 ( 𝑥 𝑥 ∧ ( ( 𝑥 𝑦𝑦 𝑧 ) → 𝑥 𝑧 ) ) ∧ ∀ 𝑧𝐵 ( ( 𝑥 𝑦𝑦 𝑥 ) → 𝑥 = 𝑦 ) ) )
7 6 2ralbii ( ∀ 𝑥𝐵𝑦𝐵𝑧𝐵 ( 𝑥 𝑥 ∧ ( ( 𝑥 𝑦𝑦 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 𝑦𝑦 𝑧 ) → 𝑥 𝑧 ) ) ↔ ∀ 𝑥𝐵𝑦𝐵 ( ∀ 𝑧𝐵 ( 𝑥 𝑥 ∧ ( ( 𝑥 𝑦𝑦 𝑧 ) → 𝑥 𝑧 ) ) ∧ ∀ 𝑧𝐵 ( ( 𝑥 𝑦𝑦 𝑥 ) → 𝑥 = 𝑦 ) ) )
8 r19.26-2 ( ∀ 𝑥𝐵𝑦𝐵 ( ∀ 𝑧𝐵 ( 𝑥 𝑥 ∧ ( ( 𝑥 𝑦𝑦 𝑧 ) → 𝑥 𝑧 ) ) ∧ ∀ 𝑧𝐵 ( ( 𝑥 𝑦𝑦 𝑥 ) → 𝑥 = 𝑦 ) ) ↔ ( ∀ 𝑥𝐵𝑦𝐵𝑧𝐵 ( 𝑥 𝑥 ∧ ( ( 𝑥 𝑦𝑦 𝑧 ) → 𝑥 𝑧 ) ) ∧ ∀ 𝑥𝐵𝑦𝐵𝑧𝐵 ( ( 𝑥 𝑦𝑦 𝑥 ) → 𝑥 = 𝑦 ) ) )
9 rr19.3v ( ∀ 𝑦𝐵𝑧𝐵 ( ( 𝑥 𝑦𝑦 𝑥 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑦𝐵 ( ( 𝑥 𝑦𝑦 𝑥 ) → 𝑥 = 𝑦 ) )
10 9 ralbii ( ∀ 𝑥𝐵𝑦𝐵𝑧𝐵 ( ( 𝑥 𝑦𝑦 𝑥 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑥𝐵𝑦𝐵 ( ( 𝑥 𝑦𝑦 𝑥 ) → 𝑥 = 𝑦 ) )
11 10 anbi2i ( ( ∀ 𝑥𝐵𝑦𝐵𝑧𝐵 ( 𝑥 𝑥 ∧ ( ( 𝑥 𝑦𝑦 𝑧 ) → 𝑥 𝑧 ) ) ∧ ∀ 𝑥𝐵𝑦𝐵𝑧𝐵 ( ( 𝑥 𝑦𝑦 𝑥 ) → 𝑥 = 𝑦 ) ) ↔ ( ∀ 𝑥𝐵𝑦𝐵𝑧𝐵 ( 𝑥 𝑥 ∧ ( ( 𝑥 𝑦𝑦 𝑧 ) → 𝑥 𝑧 ) ) ∧ ∀ 𝑥𝐵𝑦𝐵 ( ( 𝑥 𝑦𝑦 𝑥 ) → 𝑥 = 𝑦 ) ) )
12 8 11 bitri ( ∀ 𝑥𝐵𝑦𝐵 ( ∀ 𝑧𝐵 ( 𝑥 𝑥 ∧ ( ( 𝑥 𝑦𝑦 𝑧 ) → 𝑥 𝑧 ) ) ∧ ∀ 𝑧𝐵 ( ( 𝑥 𝑦𝑦 𝑥 ) → 𝑥 = 𝑦 ) ) ↔ ( ∀ 𝑥𝐵𝑦𝐵𝑧𝐵 ( 𝑥 𝑥 ∧ ( ( 𝑥 𝑦𝑦 𝑧 ) → 𝑥 𝑧 ) ) ∧ ∀ 𝑥𝐵𝑦𝐵 ( ( 𝑥 𝑦𝑦 𝑥 ) → 𝑥 = 𝑦 ) ) )
13 7 12 bitri ( ∀ 𝑥𝐵𝑦𝐵𝑧𝐵 ( 𝑥 𝑥 ∧ ( ( 𝑥 𝑦𝑦 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 𝑦𝑦 𝑧 ) → 𝑥 𝑧 ) ) ↔ ( ∀ 𝑥𝐵𝑦𝐵𝑧𝐵 ( 𝑥 𝑥 ∧ ( ( 𝑥 𝑦𝑦 𝑧 ) → 𝑥 𝑧 ) ) ∧ ∀ 𝑥𝐵𝑦𝐵 ( ( 𝑥 𝑦𝑦 𝑥 ) → 𝑥 = 𝑦 ) ) )
14 13 anbi2i ( ( 𝐾 ∈ V ∧ ∀ 𝑥𝐵𝑦𝐵𝑧𝐵 ( 𝑥 𝑥 ∧ ( ( 𝑥 𝑦𝑦 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 𝑦𝑦 𝑧 ) → 𝑥 𝑧 ) ) ) ↔ ( 𝐾 ∈ V ∧ ( ∀ 𝑥𝐵𝑦𝐵𝑧𝐵 ( 𝑥 𝑥 ∧ ( ( 𝑥 𝑦𝑦 𝑧 ) → 𝑥 𝑧 ) ) ∧ ∀ 𝑥𝐵𝑦𝐵 ( ( 𝑥 𝑦𝑦 𝑥 ) → 𝑥 = 𝑦 ) ) ) )
15 1 2 ispos ( 𝐾 ∈ Poset ↔ ( 𝐾 ∈ V ∧ ∀ 𝑥𝐵𝑦𝐵𝑧𝐵 ( 𝑥 𝑥 ∧ ( ( 𝑥 𝑦𝑦 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 𝑦𝑦 𝑧 ) → 𝑥 𝑧 ) ) ) )
16 1 2 isprs ( 𝐾 ∈ Proset ↔ ( 𝐾 ∈ V ∧ ∀ 𝑥𝐵𝑦𝐵𝑧𝐵 ( 𝑥 𝑥 ∧ ( ( 𝑥 𝑦𝑦 𝑧 ) → 𝑥 𝑧 ) ) ) )
17 16 anbi1i ( ( 𝐾 ∈ Proset ∧ ∀ 𝑥𝐵𝑦𝐵 ( ( 𝑥 𝑦𝑦 𝑥 ) → 𝑥 = 𝑦 ) ) ↔ ( ( 𝐾 ∈ V ∧ ∀ 𝑥𝐵𝑦𝐵𝑧𝐵 ( 𝑥 𝑥 ∧ ( ( 𝑥 𝑦𝑦 𝑧 ) → 𝑥 𝑧 ) ) ) ∧ ∀ 𝑥𝐵𝑦𝐵 ( ( 𝑥 𝑦𝑦 𝑥 ) → 𝑥 = 𝑦 ) ) )
18 anass ( ( ( 𝐾 ∈ V ∧ ∀ 𝑥𝐵𝑦𝐵𝑧𝐵 ( 𝑥 𝑥 ∧ ( ( 𝑥 𝑦𝑦 𝑧 ) → 𝑥 𝑧 ) ) ) ∧ ∀ 𝑥𝐵𝑦𝐵 ( ( 𝑥 𝑦𝑦 𝑥 ) → 𝑥 = 𝑦 ) ) ↔ ( 𝐾 ∈ V ∧ ( ∀ 𝑥𝐵𝑦𝐵𝑧𝐵 ( 𝑥 𝑥 ∧ ( ( 𝑥 𝑦𝑦 𝑧 ) → 𝑥 𝑧 ) ) ∧ ∀ 𝑥𝐵𝑦𝐵 ( ( 𝑥 𝑦𝑦 𝑥 ) → 𝑥 = 𝑦 ) ) ) )
19 17 18 bitri ( ( 𝐾 ∈ Proset ∧ ∀ 𝑥𝐵𝑦𝐵 ( ( 𝑥 𝑦𝑦 𝑥 ) → 𝑥 = 𝑦 ) ) ↔ ( 𝐾 ∈ V ∧ ( ∀ 𝑥𝐵𝑦𝐵𝑧𝐵 ( 𝑥 𝑥 ∧ ( ( 𝑥 𝑦𝑦 𝑧 ) → 𝑥 𝑧 ) ) ∧ ∀ 𝑥𝐵𝑦𝐵 ( ( 𝑥 𝑦𝑦 𝑥 ) → 𝑥 = 𝑦 ) ) ) )
20 14 15 19 3bitr4i ( 𝐾 ∈ Poset ↔ ( 𝐾 ∈ Proset ∧ ∀ 𝑥𝐵𝑦𝐵 ( ( 𝑥 𝑦𝑦 𝑥 ) → 𝑥 = 𝑦 ) ) )