Metamath Proof Explorer


Theorem prstcbas

Description: The base set is unchanged. (Contributed by Zhi Wang, 20-Sep-2024)

Ref Expression
Hypotheses prstcnid.c ( 𝜑𝐶 = ( ProsetToCat ‘ 𝐾 ) )
prstcnid.k ( 𝜑𝐾 ∈ Proset )
prstcbas.b ( 𝜑𝐵 = ( Base ‘ 𝐾 ) )
Assertion prstcbas ( 𝜑𝐵 = ( Base ‘ 𝐶 ) )

Proof

Step Hyp Ref Expression
1 prstcnid.c ( 𝜑𝐶 = ( ProsetToCat ‘ 𝐾 ) )
2 prstcnid.k ( 𝜑𝐾 ∈ Proset )
3 prstcbas.b ( 𝜑𝐵 = ( Base ‘ 𝐾 ) )
4 baseid Base = Slot ( Base ‘ ndx )
5 slotsbhcdif ( ( Base ‘ ndx ) ≠ ( Hom ‘ ndx ) ∧ ( Base ‘ ndx ) ≠ ( comp ‘ ndx ) ∧ ( Hom ‘ ndx ) ≠ ( comp ‘ ndx ) )
6 5 simp2i ( Base ‘ ndx ) ≠ ( comp ‘ ndx )
7 5 simp1i ( Base ‘ ndx ) ≠ ( Hom ‘ ndx )
8 1 2 4 6 7 prstcnid ( 𝜑 → ( Base ‘ 𝐾 ) = ( Base ‘ 𝐶 ) )
9 3 8 eqtrd ( 𝜑𝐵 = ( Base ‘ 𝐶 ) )