Step |
Hyp |
Ref |
Expression |
1 |
|
prstcnid.c |
|- ( ph -> C = ( ProsetToCat ` K ) ) |
2 |
|
prstcnid.k |
|- ( ph -> K e. Proset ) |
3 |
|
prstcnid.e |
|- E = Slot ( E ` ndx ) |
4 |
|
prstcnid.no |
|- ( E ` ndx ) =/= ( comp ` ndx ) |
5 |
1 2
|
prstcval |
|- ( ph -> C = ( ( K sSet <. ( Hom ` ndx ) , ( ( le ` K ) X. { 1o } ) >. ) sSet <. ( comp ` ndx ) , (/) >. ) ) |
6 |
5
|
fveq2d |
|- ( ph -> ( E ` C ) = ( E ` ( ( K sSet <. ( Hom ` ndx ) , ( ( le ` K ) X. { 1o } ) >. ) sSet <. ( comp ` ndx ) , (/) >. ) ) ) |
7 |
3 4
|
setsnid |
|- ( E ` ( K sSet <. ( Hom ` ndx ) , ( ( le ` K ) X. { 1o } ) >. ) ) = ( E ` ( ( K sSet <. ( Hom ` ndx ) , ( ( le ` K ) X. { 1o } ) >. ) sSet <. ( comp ` ndx ) , (/) >. ) ) |
8 |
6 7
|
eqtr4di |
|- ( ph -> ( E ` C ) = ( E ` ( K sSet <. ( Hom ` ndx ) , ( ( le ` K ) X. { 1o } ) >. ) ) ) |