Description: Components other than Hom and comp are unchanged. (Contributed by Zhi Wang, 20-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prstcnid.c | |- ( ph -> C = ( ProsetToCat ` K ) ) |
|
| prstcnid.k | |- ( ph -> K e. Proset ) |
||
| prstcnid.e | |- E = Slot ( E ` ndx ) |
||
| prstcnid.no | |- ( E ` ndx ) =/= ( comp ` ndx ) |
||
| prstcnid.nh | |- ( E ` ndx ) =/= ( Hom ` ndx ) |
||
| Assertion | prstcnid | |- ( ph -> ( E ` K ) = ( E ` C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prstcnid.c | |- ( ph -> C = ( ProsetToCat ` K ) ) |
|
| 2 | prstcnid.k | |- ( ph -> K e. Proset ) |
|
| 3 | prstcnid.e | |- E = Slot ( E ` ndx ) |
|
| 4 | prstcnid.no | |- ( E ` ndx ) =/= ( comp ` ndx ) |
|
| 5 | prstcnid.nh | |- ( E ` ndx ) =/= ( Hom ` ndx ) |
|
| 6 | 3 5 | setsnid | |- ( E ` K ) = ( E ` ( K sSet <. ( Hom ` ndx ) , ( ( le ` K ) X. { 1o } ) >. ) ) |
| 7 | 1 2 3 4 | prstcnidlem | |- ( ph -> ( E ` C ) = ( E ` ( K sSet <. ( Hom ` ndx ) , ( ( le ` K ) X. { 1o } ) >. ) ) ) |
| 8 | 6 7 | eqtr4id | |- ( ph -> ( E ` K ) = ( E ` C ) ) |