Metamath Proof Explorer


Theorem prstcnid

Description: Components other than Hom and comp are unchanged. (Contributed by Zhi Wang, 20-Sep-2024)

Ref Expression
Hypotheses prstcnid.c
|- ( ph -> C = ( ProsetToCat ` K ) )
prstcnid.k
|- ( ph -> K e. Proset )
prstcnid.e
|- E = Slot ( E ` ndx )
prstcnid.no
|- ( E ` ndx ) =/= ( comp ` ndx )
prstcnid.nh
|- ( E ` ndx ) =/= ( Hom ` ndx )
Assertion prstcnid
|- ( ph -> ( E ` K ) = ( E ` C ) )

Proof

Step Hyp Ref Expression
1 prstcnid.c
 |-  ( ph -> C = ( ProsetToCat ` K ) )
2 prstcnid.k
 |-  ( ph -> K e. Proset )
3 prstcnid.e
 |-  E = Slot ( E ` ndx )
4 prstcnid.no
 |-  ( E ` ndx ) =/= ( comp ` ndx )
5 prstcnid.nh
 |-  ( E ` ndx ) =/= ( Hom ` ndx )
6 3 5 setsnid
 |-  ( E ` K ) = ( E ` ( K sSet <. ( Hom ` ndx ) , ( ( le ` K ) X. { 1o } ) >. ) )
7 1 2 3 4 prstcnidlem
 |-  ( ph -> ( E ` C ) = ( E ` ( K sSet <. ( Hom ` ndx ) , ( ( le ` K ) X. { 1o } ) >. ) ) )
8 6 7 eqtr4id
 |-  ( ph -> ( E ` K ) = ( E ` C ) )