Step |
Hyp |
Ref |
Expression |
1 |
|
prstcnid.c |
|- ( ph -> C = ( ProsetToCat ` K ) ) |
2 |
|
prstcnid.k |
|- ( ph -> K e. Proset ) |
3 |
|
id |
|- ( k = K -> k = K ) |
4 |
|
fveq2 |
|- ( k = K -> ( le ` k ) = ( le ` K ) ) |
5 |
4
|
xpeq1d |
|- ( k = K -> ( ( le ` k ) X. { 1o } ) = ( ( le ` K ) X. { 1o } ) ) |
6 |
5
|
opeq2d |
|- ( k = K -> <. ( Hom ` ndx ) , ( ( le ` k ) X. { 1o } ) >. = <. ( Hom ` ndx ) , ( ( le ` K ) X. { 1o } ) >. ) |
7 |
3 6
|
oveq12d |
|- ( k = K -> ( k sSet <. ( Hom ` ndx ) , ( ( le ` k ) X. { 1o } ) >. ) = ( K sSet <. ( Hom ` ndx ) , ( ( le ` K ) X. { 1o } ) >. ) ) |
8 |
7
|
oveq1d |
|- ( k = K -> ( ( k sSet <. ( Hom ` ndx ) , ( ( le ` k ) X. { 1o } ) >. ) sSet <. ( comp ` ndx ) , (/) >. ) = ( ( K sSet <. ( Hom ` ndx ) , ( ( le ` K ) X. { 1o } ) >. ) sSet <. ( comp ` ndx ) , (/) >. ) ) |
9 |
|
df-prstc |
|- ProsetToCat = ( k e. Proset |-> ( ( k sSet <. ( Hom ` ndx ) , ( ( le ` k ) X. { 1o } ) >. ) sSet <. ( comp ` ndx ) , (/) >. ) ) |
10 |
|
ovex |
|- ( ( K sSet <. ( Hom ` ndx ) , ( ( le ` K ) X. { 1o } ) >. ) sSet <. ( comp ` ndx ) , (/) >. ) e. _V |
11 |
8 9 10
|
fvmpt |
|- ( K e. Proset -> ( ProsetToCat ` K ) = ( ( K sSet <. ( Hom ` ndx ) , ( ( le ` K ) X. { 1o } ) >. ) sSet <. ( comp ` ndx ) , (/) >. ) ) |
12 |
2 11
|
syl |
|- ( ph -> ( ProsetToCat ` K ) = ( ( K sSet <. ( Hom ` ndx ) , ( ( le ` K ) X. { 1o } ) >. ) sSet <. ( comp ` ndx ) , (/) >. ) ) |
13 |
1 12
|
eqtrd |
|- ( ph -> C = ( ( K sSet <. ( Hom ` ndx ) , ( ( le ` K ) X. { 1o } ) >. ) sSet <. ( comp ` ndx ) , (/) >. ) ) |