Step |
Hyp |
Ref |
Expression |
1 |
|
1nn0 |
|- 1 e. NN0 |
2 |
|
1nn |
|- 1 e. NN |
3 |
1 2
|
decnncl |
|- ; 1 1 e. NN |
4 |
3
|
nnrei |
|- ; 1 1 e. RR |
5 |
|
5nn |
|- 5 e. NN |
6 |
|
1lt5 |
|- 1 < 5 |
7 |
1 1 5 6
|
declt |
|- ; 1 1 < ; 1 5 |
8 |
4 7
|
ltneii |
|- ; 1 1 =/= ; 1 5 |
9 |
|
ocndx |
|- ( oc ` ndx ) = ; 1 1 |
10 |
|
ccondx |
|- ( comp ` ndx ) = ; 1 5 |
11 |
9 10
|
neeq12i |
|- ( ( oc ` ndx ) =/= ( comp ` ndx ) <-> ; 1 1 =/= ; 1 5 ) |
12 |
8 11
|
mpbir |
|- ( oc ` ndx ) =/= ( comp ` ndx ) |
13 |
|
4nn |
|- 4 e. NN |
14 |
|
1lt4 |
|- 1 < 4 |
15 |
1 1 13 14
|
declt |
|- ; 1 1 < ; 1 4 |
16 |
4 15
|
ltneii |
|- ; 1 1 =/= ; 1 4 |
17 |
|
homndx |
|- ( Hom ` ndx ) = ; 1 4 |
18 |
9 17
|
neeq12i |
|- ( ( oc ` ndx ) =/= ( Hom ` ndx ) <-> ; 1 1 =/= ; 1 4 ) |
19 |
16 18
|
mpbir |
|- ( oc ` ndx ) =/= ( Hom ` ndx ) |
20 |
12 19
|
pm3.2i |
|- ( ( oc ` ndx ) =/= ( comp ` ndx ) /\ ( oc ` ndx ) =/= ( Hom ` ndx ) ) |