Metamath Proof Explorer


Theorem prstcoc

Description: Orthocomplementation is unchanged. (Contributed by Zhi Wang, 20-Sep-2024)

Ref Expression
Hypotheses prstcnid.c
|- ( ph -> C = ( ProsetToCat ` K ) )
prstcnid.k
|- ( ph -> K e. Proset )
prstcoc.oc
|- ( ph -> ._|_ = ( oc ` K ) )
Assertion prstcoc
|- ( ph -> ( ._|_ ` X ) = ( ( oc ` C ) ` X ) )

Proof

Step Hyp Ref Expression
1 prstcnid.c
 |-  ( ph -> C = ( ProsetToCat ` K ) )
2 prstcnid.k
 |-  ( ph -> K e. Proset )
3 prstcoc.oc
 |-  ( ph -> ._|_ = ( oc ` K ) )
4 1 2 3 prstcocval
 |-  ( ph -> ._|_ = ( oc ` C ) )
5 4 fveq1d
 |-  ( ph -> ( ._|_ ` X ) = ( ( oc ` C ) ` X ) )