Metamath Proof Explorer
Description: Orthocomplementation is unchanged. (Contributed by Zhi Wang, 20-Sep-2024)
|
|
Ref |
Expression |
|
Hypotheses |
prstcnid.c |
⊢ ( 𝜑 → 𝐶 = ( ProsetToCat ‘ 𝐾 ) ) |
|
|
prstcnid.k |
⊢ ( 𝜑 → 𝐾 ∈ Proset ) |
|
|
prstcoc.oc |
⊢ ( 𝜑 → ⊥ = ( oc ‘ 𝐾 ) ) |
|
Assertion |
prstcoc |
⊢ ( 𝜑 → ( ⊥ ‘ 𝑋 ) = ( ( oc ‘ 𝐶 ) ‘ 𝑋 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
prstcnid.c |
⊢ ( 𝜑 → 𝐶 = ( ProsetToCat ‘ 𝐾 ) ) |
2 |
|
prstcnid.k |
⊢ ( 𝜑 → 𝐾 ∈ Proset ) |
3 |
|
prstcoc.oc |
⊢ ( 𝜑 → ⊥ = ( oc ‘ 𝐾 ) ) |
4 |
1 2 3
|
prstcocval |
⊢ ( 𝜑 → ⊥ = ( oc ‘ 𝐶 ) ) |
5 |
4
|
fveq1d |
⊢ ( 𝜑 → ( ⊥ ‘ 𝑋 ) = ( ( oc ‘ 𝐶 ) ‘ 𝑋 ) ) |