Metamath Proof Explorer


Theorem prstcoc

Description: Orthocomplementation is unchanged. (Contributed by Zhi Wang, 20-Sep-2024)

Ref Expression
Hypotheses prstcnid.c ( 𝜑𝐶 = ( ProsetToCat ‘ 𝐾 ) )
prstcnid.k ( 𝜑𝐾 ∈ Proset )
prstcoc.oc ( 𝜑 = ( oc ‘ 𝐾 ) )
Assertion prstcoc ( 𝜑 → ( 𝑋 ) = ( ( oc ‘ 𝐶 ) ‘ 𝑋 ) )

Proof

Step Hyp Ref Expression
1 prstcnid.c ( 𝜑𝐶 = ( ProsetToCat ‘ 𝐾 ) )
2 prstcnid.k ( 𝜑𝐾 ∈ Proset )
3 prstcoc.oc ( 𝜑 = ( oc ‘ 𝐾 ) )
4 1 2 3 prstcocval ( 𝜑 = ( oc ‘ 𝐶 ) )
5 4 fveq1d ( 𝜑 → ( 𝑋 ) = ( ( oc ‘ 𝐶 ) ‘ 𝑋 ) )