Metamath Proof Explorer


Theorem slotsdifplendx2

Description: The index of the slot for the "less than or equal to" ordering is not the index of other slots. Formerly part of proof for prstcleval . (Contributed by AV, 12-Nov-2024)

Ref Expression
Assertion slotsdifplendx2 ndx comp ndx ndx Hom ndx

Proof

Step Hyp Ref Expression
1 10re 10
2 1nn0 1 0
3 0nn0 0 0
4 5nn 5
5 5pos 0 < 5
6 2 3 4 5 declt 10 < 15
7 1 6 ltneii 10 15
8 plendx ndx = 10
9 ccondx comp ndx = 15
10 8 9 neeq12i ndx comp ndx 10 15
11 7 10 mpbir ndx comp ndx
12 4nn 4
13 4pos 0 < 4
14 2 3 12 13 declt 10 < 14
15 1 14 ltneii 10 14
16 homndx Hom ndx = 14
17 8 16 neeq12i ndx Hom ndx 10 14
18 15 17 mpbir ndx Hom ndx
19 11 18 pm3.2i ndx comp ndx ndx Hom ndx