Step |
Hyp |
Ref |
Expression |
1 |
|
oppcbas.1 |
|- O = ( oppCat ` C ) |
2 |
|
oppcbas.2 |
|- B = ( Base ` C ) |
3 |
|
baseid |
|- Base = Slot ( Base ` ndx ) |
4 |
|
slotsbhcdif |
|- ( ( Base ` ndx ) =/= ( Hom ` ndx ) /\ ( Base ` ndx ) =/= ( comp ` ndx ) /\ ( Hom ` ndx ) =/= ( comp ` ndx ) ) |
5 |
4
|
simp1i |
|- ( Base ` ndx ) =/= ( Hom ` ndx ) |
6 |
3 5
|
setsnid |
|- ( Base ` C ) = ( Base ` ( C sSet <. ( Hom ` ndx ) , tpos ( Hom ` C ) >. ) ) |
7 |
4
|
simp2i |
|- ( Base ` ndx ) =/= ( comp ` ndx ) |
8 |
3 7
|
setsnid |
|- ( Base ` ( C sSet <. ( Hom ` ndx ) , tpos ( Hom ` C ) >. ) ) = ( Base ` ( ( C sSet <. ( Hom ` ndx ) , tpos ( Hom ` C ) >. ) sSet <. ( comp ` ndx ) , ( u e. ( ( Base ` C ) X. ( Base ` C ) ) , z e. ( Base ` C ) |-> tpos ( <. z , ( 2nd ` u ) >. ( comp ` C ) ( 1st ` u ) ) ) >. ) ) |
9 |
6 8
|
eqtri |
|- ( Base ` C ) = ( Base ` ( ( C sSet <. ( Hom ` ndx ) , tpos ( Hom ` C ) >. ) sSet <. ( comp ` ndx ) , ( u e. ( ( Base ` C ) X. ( Base ` C ) ) , z e. ( Base ` C ) |-> tpos ( <. z , ( 2nd ` u ) >. ( comp ` C ) ( 1st ` u ) ) ) >. ) ) |
10 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
11 |
|
eqid |
|- ( Hom ` C ) = ( Hom ` C ) |
12 |
|
eqid |
|- ( comp ` C ) = ( comp ` C ) |
13 |
10 11 12 1
|
oppcval |
|- ( C e. _V -> O = ( ( C sSet <. ( Hom ` ndx ) , tpos ( Hom ` C ) >. ) sSet <. ( comp ` ndx ) , ( u e. ( ( Base ` C ) X. ( Base ` C ) ) , z e. ( Base ` C ) |-> tpos ( <. z , ( 2nd ` u ) >. ( comp ` C ) ( 1st ` u ) ) ) >. ) ) |
14 |
13
|
fveq2d |
|- ( C e. _V -> ( Base ` O ) = ( Base ` ( ( C sSet <. ( Hom ` ndx ) , tpos ( Hom ` C ) >. ) sSet <. ( comp ` ndx ) , ( u e. ( ( Base ` C ) X. ( Base ` C ) ) , z e. ( Base ` C ) |-> tpos ( <. z , ( 2nd ` u ) >. ( comp ` C ) ( 1st ` u ) ) ) >. ) ) ) |
15 |
9 14
|
eqtr4id |
|- ( C e. _V -> ( Base ` C ) = ( Base ` O ) ) |
16 |
|
base0 |
|- (/) = ( Base ` (/) ) |
17 |
16
|
eqcomi |
|- ( Base ` (/) ) = (/) |
18 |
17 1
|
fveqprc |
|- ( -. C e. _V -> ( Base ` C ) = ( Base ` O ) ) |
19 |
15 18
|
pm2.61i |
|- ( Base ` C ) = ( Base ` O ) |
20 |
2 19
|
eqtri |
|- B = ( Base ` O ) |