| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oppcbas.1 |
|- O = ( oppCat ` C ) |
| 2 |
|
oppcbas.2 |
|- B = ( Base ` C ) |
| 3 |
|
baseid |
|- Base = Slot ( Base ` ndx ) |
| 4 |
|
slotsbhcdif |
|- ( ( Base ` ndx ) =/= ( Hom ` ndx ) /\ ( Base ` ndx ) =/= ( comp ` ndx ) /\ ( Hom ` ndx ) =/= ( comp ` ndx ) ) |
| 5 |
4
|
simp1i |
|- ( Base ` ndx ) =/= ( Hom ` ndx ) |
| 6 |
3 5
|
setsnid |
|- ( Base ` C ) = ( Base ` ( C sSet <. ( Hom ` ndx ) , tpos ( Hom ` C ) >. ) ) |
| 7 |
4
|
simp2i |
|- ( Base ` ndx ) =/= ( comp ` ndx ) |
| 8 |
3 7
|
setsnid |
|- ( Base ` ( C sSet <. ( Hom ` ndx ) , tpos ( Hom ` C ) >. ) ) = ( Base ` ( ( C sSet <. ( Hom ` ndx ) , tpos ( Hom ` C ) >. ) sSet <. ( comp ` ndx ) , ( u e. ( ( Base ` C ) X. ( Base ` C ) ) , z e. ( Base ` C ) |-> tpos ( <. z , ( 2nd ` u ) >. ( comp ` C ) ( 1st ` u ) ) ) >. ) ) |
| 9 |
6 8
|
eqtri |
|- ( Base ` C ) = ( Base ` ( ( C sSet <. ( Hom ` ndx ) , tpos ( Hom ` C ) >. ) sSet <. ( comp ` ndx ) , ( u e. ( ( Base ` C ) X. ( Base ` C ) ) , z e. ( Base ` C ) |-> tpos ( <. z , ( 2nd ` u ) >. ( comp ` C ) ( 1st ` u ) ) ) >. ) ) |
| 10 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
| 11 |
|
eqid |
|- ( Hom ` C ) = ( Hom ` C ) |
| 12 |
|
eqid |
|- ( comp ` C ) = ( comp ` C ) |
| 13 |
10 11 12 1
|
oppcval |
|- ( C e. _V -> O = ( ( C sSet <. ( Hom ` ndx ) , tpos ( Hom ` C ) >. ) sSet <. ( comp ` ndx ) , ( u e. ( ( Base ` C ) X. ( Base ` C ) ) , z e. ( Base ` C ) |-> tpos ( <. z , ( 2nd ` u ) >. ( comp ` C ) ( 1st ` u ) ) ) >. ) ) |
| 14 |
13
|
fveq2d |
|- ( C e. _V -> ( Base ` O ) = ( Base ` ( ( C sSet <. ( Hom ` ndx ) , tpos ( Hom ` C ) >. ) sSet <. ( comp ` ndx ) , ( u e. ( ( Base ` C ) X. ( Base ` C ) ) , z e. ( Base ` C ) |-> tpos ( <. z , ( 2nd ` u ) >. ( comp ` C ) ( 1st ` u ) ) ) >. ) ) ) |
| 15 |
9 14
|
eqtr4id |
|- ( C e. _V -> ( Base ` C ) = ( Base ` O ) ) |
| 16 |
|
base0 |
|- (/) = ( Base ` (/) ) |
| 17 |
16
|
eqcomi |
|- ( Base ` (/) ) = (/) |
| 18 |
17 1
|
fveqprc |
|- ( -. C e. _V -> ( Base ` C ) = ( Base ` O ) ) |
| 19 |
15 18
|
pm2.61i |
|- ( Base ` C ) = ( Base ` O ) |
| 20 |
2 19
|
eqtri |
|- B = ( Base ` O ) |