Step |
Hyp |
Ref |
Expression |
1 |
|
yon11.y |
⊢ 𝑌 = ( Yon ‘ 𝐶 ) |
2 |
|
yon11.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
3 |
|
yon11.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
4 |
|
yon11.p |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
5 |
|
yon11.h |
⊢ 𝐻 = ( Hom ‘ 𝐶 ) |
6 |
|
yon11.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) |
7 |
|
yon12.x |
⊢ · = ( comp ‘ 𝐶 ) |
8 |
|
yon12.w |
⊢ ( 𝜑 → 𝑊 ∈ 𝐵 ) |
9 |
|
yon12.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑊 𝐻 𝑍 ) ) |
10 |
|
yon12.g |
⊢ ( 𝜑 → 𝐺 ∈ ( 𝑍 𝐻 𝑋 ) ) |
11 |
|
eqid |
⊢ ( oppCat ‘ 𝐶 ) = ( oppCat ‘ 𝐶 ) |
12 |
|
eqid |
⊢ ( HomF ‘ ( oppCat ‘ 𝐶 ) ) = ( HomF ‘ ( oppCat ‘ 𝐶 ) ) |
13 |
1 3 11 12
|
yonval |
⊢ ( 𝜑 → 𝑌 = ( 〈 𝐶 , ( oppCat ‘ 𝐶 ) 〉 curryF ( HomF ‘ ( oppCat ‘ 𝐶 ) ) ) ) |
14 |
13
|
fveq2d |
⊢ ( 𝜑 → ( 1st ‘ 𝑌 ) = ( 1st ‘ ( 〈 𝐶 , ( oppCat ‘ 𝐶 ) 〉 curryF ( HomF ‘ ( oppCat ‘ 𝐶 ) ) ) ) ) |
15 |
14
|
fveq1d |
⊢ ( 𝜑 → ( ( 1st ‘ 𝑌 ) ‘ 𝑋 ) = ( ( 1st ‘ ( 〈 𝐶 , ( oppCat ‘ 𝐶 ) 〉 curryF ( HomF ‘ ( oppCat ‘ 𝐶 ) ) ) ) ‘ 𝑋 ) ) |
16 |
15
|
fveq2d |
⊢ ( 𝜑 → ( 2nd ‘ ( ( 1st ‘ 𝑌 ) ‘ 𝑋 ) ) = ( 2nd ‘ ( ( 1st ‘ ( 〈 𝐶 , ( oppCat ‘ 𝐶 ) 〉 curryF ( HomF ‘ ( oppCat ‘ 𝐶 ) ) ) ) ‘ 𝑋 ) ) ) |
17 |
16
|
oveqd |
⊢ ( 𝜑 → ( 𝑍 ( 2nd ‘ ( ( 1st ‘ 𝑌 ) ‘ 𝑋 ) ) 𝑊 ) = ( 𝑍 ( 2nd ‘ ( ( 1st ‘ ( 〈 𝐶 , ( oppCat ‘ 𝐶 ) 〉 curryF ( HomF ‘ ( oppCat ‘ 𝐶 ) ) ) ) ‘ 𝑋 ) ) 𝑊 ) ) |
18 |
17
|
fveq1d |
⊢ ( 𝜑 → ( ( 𝑍 ( 2nd ‘ ( ( 1st ‘ 𝑌 ) ‘ 𝑋 ) ) 𝑊 ) ‘ 𝐹 ) = ( ( 𝑍 ( 2nd ‘ ( ( 1st ‘ ( 〈 𝐶 , ( oppCat ‘ 𝐶 ) 〉 curryF ( HomF ‘ ( oppCat ‘ 𝐶 ) ) ) ) ‘ 𝑋 ) ) 𝑊 ) ‘ 𝐹 ) ) |
19 |
|
eqid |
⊢ ( 〈 𝐶 , ( oppCat ‘ 𝐶 ) 〉 curryF ( HomF ‘ ( oppCat ‘ 𝐶 ) ) ) = ( 〈 𝐶 , ( oppCat ‘ 𝐶 ) 〉 curryF ( HomF ‘ ( oppCat ‘ 𝐶 ) ) ) |
20 |
11
|
oppccat |
⊢ ( 𝐶 ∈ Cat → ( oppCat ‘ 𝐶 ) ∈ Cat ) |
21 |
3 20
|
syl |
⊢ ( 𝜑 → ( oppCat ‘ 𝐶 ) ∈ Cat ) |
22 |
|
eqid |
⊢ ( SetCat ‘ ran ( Homf ‘ 𝐶 ) ) = ( SetCat ‘ ran ( Homf ‘ 𝐶 ) ) |
23 |
|
fvex |
⊢ ( Homf ‘ 𝐶 ) ∈ V |
24 |
23
|
rnex |
⊢ ran ( Homf ‘ 𝐶 ) ∈ V |
25 |
24
|
a1i |
⊢ ( 𝜑 → ran ( Homf ‘ 𝐶 ) ∈ V ) |
26 |
|
ssidd |
⊢ ( 𝜑 → ran ( Homf ‘ 𝐶 ) ⊆ ran ( Homf ‘ 𝐶 ) ) |
27 |
11 12 22 3 25 26
|
oppchofcl |
⊢ ( 𝜑 → ( HomF ‘ ( oppCat ‘ 𝐶 ) ) ∈ ( ( 𝐶 ×c ( oppCat ‘ 𝐶 ) ) Func ( SetCat ‘ ran ( Homf ‘ 𝐶 ) ) ) ) |
28 |
11 2
|
oppcbas |
⊢ 𝐵 = ( Base ‘ ( oppCat ‘ 𝐶 ) ) |
29 |
|
eqid |
⊢ ( ( 1st ‘ ( 〈 𝐶 , ( oppCat ‘ 𝐶 ) 〉 curryF ( HomF ‘ ( oppCat ‘ 𝐶 ) ) ) ) ‘ 𝑋 ) = ( ( 1st ‘ ( 〈 𝐶 , ( oppCat ‘ 𝐶 ) 〉 curryF ( HomF ‘ ( oppCat ‘ 𝐶 ) ) ) ) ‘ 𝑋 ) |
30 |
|
eqid |
⊢ ( Hom ‘ ( oppCat ‘ 𝐶 ) ) = ( Hom ‘ ( oppCat ‘ 𝐶 ) ) |
31 |
|
eqid |
⊢ ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 ) |
32 |
5 11
|
oppchom |
⊢ ( 𝑍 ( Hom ‘ ( oppCat ‘ 𝐶 ) ) 𝑊 ) = ( 𝑊 𝐻 𝑍 ) |
33 |
9 32
|
eleqtrrdi |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑍 ( Hom ‘ ( oppCat ‘ 𝐶 ) ) 𝑊 ) ) |
34 |
19 2 3 21 27 28 4 29 6 30 31 8 33
|
curf12 |
⊢ ( 𝜑 → ( ( 𝑍 ( 2nd ‘ ( ( 1st ‘ ( 〈 𝐶 , ( oppCat ‘ 𝐶 ) 〉 curryF ( HomF ‘ ( oppCat ‘ 𝐶 ) ) ) ) ‘ 𝑋 ) ) 𝑊 ) ‘ 𝐹 ) = ( ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ( 〈 𝑋 , 𝑍 〉 ( 2nd ‘ ( HomF ‘ ( oppCat ‘ 𝐶 ) ) ) 〈 𝑋 , 𝑊 〉 ) 𝐹 ) ) |
35 |
18 34
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑍 ( 2nd ‘ ( ( 1st ‘ 𝑌 ) ‘ 𝑋 ) ) 𝑊 ) ‘ 𝐹 ) = ( ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ( 〈 𝑋 , 𝑍 〉 ( 2nd ‘ ( HomF ‘ ( oppCat ‘ 𝐶 ) ) ) 〈 𝑋 , 𝑊 〉 ) 𝐹 ) ) |
36 |
35
|
fveq1d |
⊢ ( 𝜑 → ( ( ( 𝑍 ( 2nd ‘ ( ( 1st ‘ 𝑌 ) ‘ 𝑋 ) ) 𝑊 ) ‘ 𝐹 ) ‘ 𝐺 ) = ( ( ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ( 〈 𝑋 , 𝑍 〉 ( 2nd ‘ ( HomF ‘ ( oppCat ‘ 𝐶 ) ) ) 〈 𝑋 , 𝑊 〉 ) 𝐹 ) ‘ 𝐺 ) ) |
37 |
|
eqid |
⊢ ( comp ‘ ( oppCat ‘ 𝐶 ) ) = ( comp ‘ ( oppCat ‘ 𝐶 ) ) |
38 |
2 5 31 3 4
|
catidcl |
⊢ ( 𝜑 → ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ∈ ( 𝑋 𝐻 𝑋 ) ) |
39 |
5 11
|
oppchom |
⊢ ( 𝑋 ( Hom ‘ ( oppCat ‘ 𝐶 ) ) 𝑋 ) = ( 𝑋 𝐻 𝑋 ) |
40 |
38 39
|
eleqtrrdi |
⊢ ( 𝜑 → ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ∈ ( 𝑋 ( Hom ‘ ( oppCat ‘ 𝐶 ) ) 𝑋 ) ) |
41 |
5 11
|
oppchom |
⊢ ( 𝑋 ( Hom ‘ ( oppCat ‘ 𝐶 ) ) 𝑍 ) = ( 𝑍 𝐻 𝑋 ) |
42 |
10 41
|
eleqtrrdi |
⊢ ( 𝜑 → 𝐺 ∈ ( 𝑋 ( Hom ‘ ( oppCat ‘ 𝐶 ) ) 𝑍 ) ) |
43 |
12 21 28 30 4 6 4 8 37 40 33 42
|
hof2 |
⊢ ( 𝜑 → ( ( ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ( 〈 𝑋 , 𝑍 〉 ( 2nd ‘ ( HomF ‘ ( oppCat ‘ 𝐶 ) ) ) 〈 𝑋 , 𝑊 〉 ) 𝐹 ) ‘ 𝐺 ) = ( ( 𝐹 ( 〈 𝑋 , 𝑍 〉 ( comp ‘ ( oppCat ‘ 𝐶 ) ) 𝑊 ) 𝐺 ) ( 〈 𝑋 , 𝑋 〉 ( comp ‘ ( oppCat ‘ 𝐶 ) ) 𝑊 ) ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) ) |
44 |
2 7 11 4 6 8
|
oppcco |
⊢ ( 𝜑 → ( 𝐹 ( 〈 𝑋 , 𝑍 〉 ( comp ‘ ( oppCat ‘ 𝐶 ) ) 𝑊 ) 𝐺 ) = ( 𝐺 ( 〈 𝑊 , 𝑍 〉 · 𝑋 ) 𝐹 ) ) |
45 |
44
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐹 ( 〈 𝑋 , 𝑍 〉 ( comp ‘ ( oppCat ‘ 𝐶 ) ) 𝑊 ) 𝐺 ) ( 〈 𝑋 , 𝑋 〉 ( comp ‘ ( oppCat ‘ 𝐶 ) ) 𝑊 ) ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) = ( ( 𝐺 ( 〈 𝑊 , 𝑍 〉 · 𝑋 ) 𝐹 ) ( 〈 𝑋 , 𝑋 〉 ( comp ‘ ( oppCat ‘ 𝐶 ) ) 𝑊 ) ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) ) |
46 |
2 7 11 4 4 8
|
oppcco |
⊢ ( 𝜑 → ( ( 𝐺 ( 〈 𝑊 , 𝑍 〉 · 𝑋 ) 𝐹 ) ( 〈 𝑋 , 𝑋 〉 ( comp ‘ ( oppCat ‘ 𝐶 ) ) 𝑊 ) ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) = ( ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ( 〈 𝑊 , 𝑋 〉 · 𝑋 ) ( 𝐺 ( 〈 𝑊 , 𝑍 〉 · 𝑋 ) 𝐹 ) ) ) |
47 |
2 5 7 3 8 6 4 9 10
|
catcocl |
⊢ ( 𝜑 → ( 𝐺 ( 〈 𝑊 , 𝑍 〉 · 𝑋 ) 𝐹 ) ∈ ( 𝑊 𝐻 𝑋 ) ) |
48 |
2 5 31 3 8 7 4 47
|
catlid |
⊢ ( 𝜑 → ( ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ( 〈 𝑊 , 𝑋 〉 · 𝑋 ) ( 𝐺 ( 〈 𝑊 , 𝑍 〉 · 𝑋 ) 𝐹 ) ) = ( 𝐺 ( 〈 𝑊 , 𝑍 〉 · 𝑋 ) 𝐹 ) ) |
49 |
45 46 48
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝐹 ( 〈 𝑋 , 𝑍 〉 ( comp ‘ ( oppCat ‘ 𝐶 ) ) 𝑊 ) 𝐺 ) ( 〈 𝑋 , 𝑋 〉 ( comp ‘ ( oppCat ‘ 𝐶 ) ) 𝑊 ) ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) = ( 𝐺 ( 〈 𝑊 , 𝑍 〉 · 𝑋 ) 𝐹 ) ) |
50 |
36 43 49
|
3eqtrd |
⊢ ( 𝜑 → ( ( ( 𝑍 ( 2nd ‘ ( ( 1st ‘ 𝑌 ) ‘ 𝑋 ) ) 𝑊 ) ‘ 𝐹 ) ‘ 𝐺 ) = ( 𝐺 ( 〈 𝑊 , 𝑍 〉 · 𝑋 ) 𝐹 ) ) |