Metamath Proof Explorer


Theorem hof2

Description: The morphism part of the Hom functor, for morphisms <. f , g >. : <. X , Y >. --> <. Z , W >. (which since the first argument is contravariant means morphisms f : Z --> X and g : Y --> W ), yields a function (a morphism of SetCat ) mapping h : X --> Y to g o. h o. f : Z --> W . (Contributed by Mario Carneiro, 15-Jan-2017)

Ref Expression
Hypotheses hofval.m 𝑀 = ( HomF𝐶 )
hofval.c ( 𝜑𝐶 ∈ Cat )
hof1.b 𝐵 = ( Base ‘ 𝐶 )
hof1.h 𝐻 = ( Hom ‘ 𝐶 )
hof1.x ( 𝜑𝑋𝐵 )
hof1.y ( 𝜑𝑌𝐵 )
hof2.z ( 𝜑𝑍𝐵 )
hof2.w ( 𝜑𝑊𝐵 )
hof2.o · = ( comp ‘ 𝐶 )
hof2.f ( 𝜑𝐹 ∈ ( 𝑍 𝐻 𝑋 ) )
hof2.g ( 𝜑𝐺 ∈ ( 𝑌 𝐻 𝑊 ) )
hof2.k ( 𝜑𝐾 ∈ ( 𝑋 𝐻 𝑌 ) )
Assertion hof2 ( 𝜑 → ( ( 𝐹 ( ⟨ 𝑋 , 𝑌 ⟩ ( 2nd𝑀 ) ⟨ 𝑍 , 𝑊 ⟩ ) 𝐺 ) ‘ 𝐾 ) = ( ( 𝐺 ( ⟨ 𝑋 , 𝑌· 𝑊 ) 𝐾 ) ( ⟨ 𝑍 , 𝑋· 𝑊 ) 𝐹 ) )

Proof

Step Hyp Ref Expression
1 hofval.m 𝑀 = ( HomF𝐶 )
2 hofval.c ( 𝜑𝐶 ∈ Cat )
3 hof1.b 𝐵 = ( Base ‘ 𝐶 )
4 hof1.h 𝐻 = ( Hom ‘ 𝐶 )
5 hof1.x ( 𝜑𝑋𝐵 )
6 hof1.y ( 𝜑𝑌𝐵 )
7 hof2.z ( 𝜑𝑍𝐵 )
8 hof2.w ( 𝜑𝑊𝐵 )
9 hof2.o · = ( comp ‘ 𝐶 )
10 hof2.f ( 𝜑𝐹 ∈ ( 𝑍 𝐻 𝑋 ) )
11 hof2.g ( 𝜑𝐺 ∈ ( 𝑌 𝐻 𝑊 ) )
12 hof2.k ( 𝜑𝐾 ∈ ( 𝑋 𝐻 𝑌 ) )
13 1 2 3 4 5 6 7 8 9 10 11 hof2val ( 𝜑 → ( 𝐹 ( ⟨ 𝑋 , 𝑌 ⟩ ( 2nd𝑀 ) ⟨ 𝑍 , 𝑊 ⟩ ) 𝐺 ) = ( ∈ ( 𝑋 𝐻 𝑌 ) ↦ ( ( 𝐺 ( ⟨ 𝑋 , 𝑌· 𝑊 ) ) ( ⟨ 𝑍 , 𝑋· 𝑊 ) 𝐹 ) ) )
14 simpr ( ( 𝜑 = 𝐾 ) → = 𝐾 )
15 14 oveq2d ( ( 𝜑 = 𝐾 ) → ( 𝐺 ( ⟨ 𝑋 , 𝑌· 𝑊 ) ) = ( 𝐺 ( ⟨ 𝑋 , 𝑌· 𝑊 ) 𝐾 ) )
16 15 oveq1d ( ( 𝜑 = 𝐾 ) → ( ( 𝐺 ( ⟨ 𝑋 , 𝑌· 𝑊 ) ) ( ⟨ 𝑍 , 𝑋· 𝑊 ) 𝐹 ) = ( ( 𝐺 ( ⟨ 𝑋 , 𝑌· 𝑊 ) 𝐾 ) ( ⟨ 𝑍 , 𝑋· 𝑊 ) 𝐹 ) )
17 ovexd ( 𝜑 → ( ( 𝐺 ( ⟨ 𝑋 , 𝑌· 𝑊 ) 𝐾 ) ( ⟨ 𝑍 , 𝑋· 𝑊 ) 𝐹 ) ∈ V )
18 13 16 12 17 fvmptd ( 𝜑 → ( ( 𝐹 ( ⟨ 𝑋 , 𝑌 ⟩ ( 2nd𝑀 ) ⟨ 𝑍 , 𝑊 ⟩ ) 𝐺 ) ‘ 𝐾 ) = ( ( 𝐺 ( ⟨ 𝑋 , 𝑌· 𝑊 ) 𝐾 ) ( ⟨ 𝑍 , 𝑋· 𝑊 ) 𝐹 ) )