Metamath Proof Explorer


Theorem hofcllem

Description: Lemma for hofcl . (Contributed by Mario Carneiro, 15-Jan-2017)

Ref Expression
Hypotheses hofcl.m 𝑀 = ( HomF𝐶 )
hofcl.o 𝑂 = ( oppCat ‘ 𝐶 )
hofcl.d 𝐷 = ( SetCat ‘ 𝑈 )
hofcl.c ( 𝜑𝐶 ∈ Cat )
hofcl.u ( 𝜑𝑈𝑉 )
hofcl.h ( 𝜑 → ran ( Homf𝐶 ) ⊆ 𝑈 )
hofcllem.b 𝐵 = ( Base ‘ 𝐶 )
hofcllem.h 𝐻 = ( Hom ‘ 𝐶 )
hofcllem.x ( 𝜑𝑋𝐵 )
hofcllem.y ( 𝜑𝑌𝐵 )
hofcllem.z ( 𝜑𝑍𝐵 )
hofcllem.w ( 𝜑𝑊𝐵 )
hofcllem.s ( 𝜑𝑆𝐵 )
hofcllem.t ( 𝜑𝑇𝐵 )
hofcllem.m ( 𝜑𝐾 ∈ ( 𝑍 𝐻 𝑋 ) )
hofcllem.n ( 𝜑𝐿 ∈ ( 𝑌 𝐻 𝑊 ) )
hofcllem.p ( 𝜑𝑃 ∈ ( 𝑆 𝐻 𝑍 ) )
hofcllem.q ( 𝜑𝑄 ∈ ( 𝑊 𝐻 𝑇 ) )
Assertion hofcllem ( 𝜑 → ( ( 𝐾 ( ⟨ 𝑆 , 𝑍 ⟩ ( comp ‘ 𝐶 ) 𝑋 ) 𝑃 ) ( ⟨ 𝑋 , 𝑌 ⟩ ( 2nd𝑀 ) ⟨ 𝑆 , 𝑇 ⟩ ) ( 𝑄 ( ⟨ 𝑌 , 𝑊 ⟩ ( comp ‘ 𝐶 ) 𝑇 ) 𝐿 ) ) = ( ( 𝑃 ( ⟨ 𝑍 , 𝑊 ⟩ ( 2nd𝑀 ) ⟨ 𝑆 , 𝑇 ⟩ ) 𝑄 ) ( ⟨ ( 𝑋 𝐻 𝑌 ) , ( 𝑍 𝐻 𝑊 ) ⟩ ( comp ‘ 𝐷 ) ( 𝑆 𝐻 𝑇 ) ) ( 𝐾 ( ⟨ 𝑋 , 𝑌 ⟩ ( 2nd𝑀 ) ⟨ 𝑍 , 𝑊 ⟩ ) 𝐿 ) ) )

Proof

Step Hyp Ref Expression
1 hofcl.m 𝑀 = ( HomF𝐶 )
2 hofcl.o 𝑂 = ( oppCat ‘ 𝐶 )
3 hofcl.d 𝐷 = ( SetCat ‘ 𝑈 )
4 hofcl.c ( 𝜑𝐶 ∈ Cat )
5 hofcl.u ( 𝜑𝑈𝑉 )
6 hofcl.h ( 𝜑 → ran ( Homf𝐶 ) ⊆ 𝑈 )
7 hofcllem.b 𝐵 = ( Base ‘ 𝐶 )
8 hofcllem.h 𝐻 = ( Hom ‘ 𝐶 )
9 hofcllem.x ( 𝜑𝑋𝐵 )
10 hofcllem.y ( 𝜑𝑌𝐵 )
11 hofcllem.z ( 𝜑𝑍𝐵 )
12 hofcllem.w ( 𝜑𝑊𝐵 )
13 hofcllem.s ( 𝜑𝑆𝐵 )
14 hofcllem.t ( 𝜑𝑇𝐵 )
15 hofcllem.m ( 𝜑𝐾 ∈ ( 𝑍 𝐻 𝑋 ) )
16 hofcllem.n ( 𝜑𝐿 ∈ ( 𝑌 𝐻 𝑊 ) )
17 hofcllem.p ( 𝜑𝑃 ∈ ( 𝑆 𝐻 𝑍 ) )
18 hofcllem.q ( 𝜑𝑄 ∈ ( 𝑊 𝐻 𝑇 ) )
19 eqid ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 )
20 4 adantr ( ( 𝜑𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) → 𝐶 ∈ Cat )
21 13 adantr ( ( 𝜑𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) → 𝑆𝐵 )
22 11 adantr ( ( 𝜑𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) → 𝑍𝐵 )
23 9 adantr ( ( 𝜑𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) → 𝑋𝐵 )
24 17 adantr ( ( 𝜑𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) → 𝑃 ∈ ( 𝑆 𝐻 𝑍 ) )
25 15 adantr ( ( 𝜑𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) → 𝐾 ∈ ( 𝑍 𝐻 𝑋 ) )
26 14 adantr ( ( 𝜑𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) → 𝑇𝐵 )
27 10 adantr ( ( 𝜑𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) → 𝑌𝐵 )
28 simpr ( ( 𝜑𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) → 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) )
29 7 8 19 4 10 12 14 16 18 catcocl ( 𝜑 → ( 𝑄 ( ⟨ 𝑌 , 𝑊 ⟩ ( comp ‘ 𝐶 ) 𝑇 ) 𝐿 ) ∈ ( 𝑌 𝐻 𝑇 ) )
30 29 adantr ( ( 𝜑𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) → ( 𝑄 ( ⟨ 𝑌 , 𝑊 ⟩ ( comp ‘ 𝐶 ) 𝑇 ) 𝐿 ) ∈ ( 𝑌 𝐻 𝑇 ) )
31 7 8 19 20 23 27 26 28 30 catcocl ( ( 𝜑𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) → ( ( 𝑄 ( ⟨ 𝑌 , 𝑊 ⟩ ( comp ‘ 𝐶 ) 𝑇 ) 𝐿 ) ( ⟨ 𝑋 , 𝑌 ⟩ ( comp ‘ 𝐶 ) 𝑇 ) 𝑓 ) ∈ ( 𝑋 𝐻 𝑇 ) )
32 7 8 19 20 21 22 23 24 25 26 31 catass ( ( 𝜑𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) → ( ( ( ( 𝑄 ( ⟨ 𝑌 , 𝑊 ⟩ ( comp ‘ 𝐶 ) 𝑇 ) 𝐿 ) ( ⟨ 𝑋 , 𝑌 ⟩ ( comp ‘ 𝐶 ) 𝑇 ) 𝑓 ) ( ⟨ 𝑍 , 𝑋 ⟩ ( comp ‘ 𝐶 ) 𝑇 ) 𝐾 ) ( ⟨ 𝑆 , 𝑍 ⟩ ( comp ‘ 𝐶 ) 𝑇 ) 𝑃 ) = ( ( ( 𝑄 ( ⟨ 𝑌 , 𝑊 ⟩ ( comp ‘ 𝐶 ) 𝑇 ) 𝐿 ) ( ⟨ 𝑋 , 𝑌 ⟩ ( comp ‘ 𝐶 ) 𝑇 ) 𝑓 ) ( ⟨ 𝑆 , 𝑋 ⟩ ( comp ‘ 𝐶 ) 𝑇 ) ( 𝐾 ( ⟨ 𝑆 , 𝑍 ⟩ ( comp ‘ 𝐶 ) 𝑋 ) 𝑃 ) ) )
33 12 adantr ( ( 𝜑𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) → 𝑊𝐵 )
34 16 adantr ( ( 𝜑𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) → 𝐿 ∈ ( 𝑌 𝐻 𝑊 ) )
35 18 adantr ( ( 𝜑𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) → 𝑄 ∈ ( 𝑊 𝐻 𝑇 ) )
36 7 8 19 20 23 27 33 28 34 26 35 catass ( ( 𝜑𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) → ( ( 𝑄 ( ⟨ 𝑌 , 𝑊 ⟩ ( comp ‘ 𝐶 ) 𝑇 ) 𝐿 ) ( ⟨ 𝑋 , 𝑌 ⟩ ( comp ‘ 𝐶 ) 𝑇 ) 𝑓 ) = ( 𝑄 ( ⟨ 𝑋 , 𝑊 ⟩ ( comp ‘ 𝐶 ) 𝑇 ) ( 𝐿 ( ⟨ 𝑋 , 𝑌 ⟩ ( comp ‘ 𝐶 ) 𝑊 ) 𝑓 ) ) )
37 36 oveq1d ( ( 𝜑𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) → ( ( ( 𝑄 ( ⟨ 𝑌 , 𝑊 ⟩ ( comp ‘ 𝐶 ) 𝑇 ) 𝐿 ) ( ⟨ 𝑋 , 𝑌 ⟩ ( comp ‘ 𝐶 ) 𝑇 ) 𝑓 ) ( ⟨ 𝑍 , 𝑋 ⟩ ( comp ‘ 𝐶 ) 𝑇 ) 𝐾 ) = ( ( 𝑄 ( ⟨ 𝑋 , 𝑊 ⟩ ( comp ‘ 𝐶 ) 𝑇 ) ( 𝐿 ( ⟨ 𝑋 , 𝑌 ⟩ ( comp ‘ 𝐶 ) 𝑊 ) 𝑓 ) ) ( ⟨ 𝑍 , 𝑋 ⟩ ( comp ‘ 𝐶 ) 𝑇 ) 𝐾 ) )
38 7 8 19 20 23 27 33 28 34 catcocl ( ( 𝜑𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) → ( 𝐿 ( ⟨ 𝑋 , 𝑌 ⟩ ( comp ‘ 𝐶 ) 𝑊 ) 𝑓 ) ∈ ( 𝑋 𝐻 𝑊 ) )
39 7 8 19 20 22 23 33 25 38 26 35 catass ( ( 𝜑𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) → ( ( 𝑄 ( ⟨ 𝑋 , 𝑊 ⟩ ( comp ‘ 𝐶 ) 𝑇 ) ( 𝐿 ( ⟨ 𝑋 , 𝑌 ⟩ ( comp ‘ 𝐶 ) 𝑊 ) 𝑓 ) ) ( ⟨ 𝑍 , 𝑋 ⟩ ( comp ‘ 𝐶 ) 𝑇 ) 𝐾 ) = ( 𝑄 ( ⟨ 𝑍 , 𝑊 ⟩ ( comp ‘ 𝐶 ) 𝑇 ) ( ( 𝐿 ( ⟨ 𝑋 , 𝑌 ⟩ ( comp ‘ 𝐶 ) 𝑊 ) 𝑓 ) ( ⟨ 𝑍 , 𝑋 ⟩ ( comp ‘ 𝐶 ) 𝑊 ) 𝐾 ) ) )
40 37 39 eqtrd ( ( 𝜑𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) → ( ( ( 𝑄 ( ⟨ 𝑌 , 𝑊 ⟩ ( comp ‘ 𝐶 ) 𝑇 ) 𝐿 ) ( ⟨ 𝑋 , 𝑌 ⟩ ( comp ‘ 𝐶 ) 𝑇 ) 𝑓 ) ( ⟨ 𝑍 , 𝑋 ⟩ ( comp ‘ 𝐶 ) 𝑇 ) 𝐾 ) = ( 𝑄 ( ⟨ 𝑍 , 𝑊 ⟩ ( comp ‘ 𝐶 ) 𝑇 ) ( ( 𝐿 ( ⟨ 𝑋 , 𝑌 ⟩ ( comp ‘ 𝐶 ) 𝑊 ) 𝑓 ) ( ⟨ 𝑍 , 𝑋 ⟩ ( comp ‘ 𝐶 ) 𝑊 ) 𝐾 ) ) )
41 40 oveq1d ( ( 𝜑𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) → ( ( ( ( 𝑄 ( ⟨ 𝑌 , 𝑊 ⟩ ( comp ‘ 𝐶 ) 𝑇 ) 𝐿 ) ( ⟨ 𝑋 , 𝑌 ⟩ ( comp ‘ 𝐶 ) 𝑇 ) 𝑓 ) ( ⟨ 𝑍 , 𝑋 ⟩ ( comp ‘ 𝐶 ) 𝑇 ) 𝐾 ) ( ⟨ 𝑆 , 𝑍 ⟩ ( comp ‘ 𝐶 ) 𝑇 ) 𝑃 ) = ( ( 𝑄 ( ⟨ 𝑍 , 𝑊 ⟩ ( comp ‘ 𝐶 ) 𝑇 ) ( ( 𝐿 ( ⟨ 𝑋 , 𝑌 ⟩ ( comp ‘ 𝐶 ) 𝑊 ) 𝑓 ) ( ⟨ 𝑍 , 𝑋 ⟩ ( comp ‘ 𝐶 ) 𝑊 ) 𝐾 ) ) ( ⟨ 𝑆 , 𝑍 ⟩ ( comp ‘ 𝐶 ) 𝑇 ) 𝑃 ) )
42 32 41 eqtr3d ( ( 𝜑𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) → ( ( ( 𝑄 ( ⟨ 𝑌 , 𝑊 ⟩ ( comp ‘ 𝐶 ) 𝑇 ) 𝐿 ) ( ⟨ 𝑋 , 𝑌 ⟩ ( comp ‘ 𝐶 ) 𝑇 ) 𝑓 ) ( ⟨ 𝑆 , 𝑋 ⟩ ( comp ‘ 𝐶 ) 𝑇 ) ( 𝐾 ( ⟨ 𝑆 , 𝑍 ⟩ ( comp ‘ 𝐶 ) 𝑋 ) 𝑃 ) ) = ( ( 𝑄 ( ⟨ 𝑍 , 𝑊 ⟩ ( comp ‘ 𝐶 ) 𝑇 ) ( ( 𝐿 ( ⟨ 𝑋 , 𝑌 ⟩ ( comp ‘ 𝐶 ) 𝑊 ) 𝑓 ) ( ⟨ 𝑍 , 𝑋 ⟩ ( comp ‘ 𝐶 ) 𝑊 ) 𝐾 ) ) ( ⟨ 𝑆 , 𝑍 ⟩ ( comp ‘ 𝐶 ) 𝑇 ) 𝑃 ) )
43 42 mpteq2dva ( 𝜑 → ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ↦ ( ( ( 𝑄 ( ⟨ 𝑌 , 𝑊 ⟩ ( comp ‘ 𝐶 ) 𝑇 ) 𝐿 ) ( ⟨ 𝑋 , 𝑌 ⟩ ( comp ‘ 𝐶 ) 𝑇 ) 𝑓 ) ( ⟨ 𝑆 , 𝑋 ⟩ ( comp ‘ 𝐶 ) 𝑇 ) ( 𝐾 ( ⟨ 𝑆 , 𝑍 ⟩ ( comp ‘ 𝐶 ) 𝑋 ) 𝑃 ) ) ) = ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ↦ ( ( 𝑄 ( ⟨ 𝑍 , 𝑊 ⟩ ( comp ‘ 𝐶 ) 𝑇 ) ( ( 𝐿 ( ⟨ 𝑋 , 𝑌 ⟩ ( comp ‘ 𝐶 ) 𝑊 ) 𝑓 ) ( ⟨ 𝑍 , 𝑋 ⟩ ( comp ‘ 𝐶 ) 𝑊 ) 𝐾 ) ) ( ⟨ 𝑆 , 𝑍 ⟩ ( comp ‘ 𝐶 ) 𝑇 ) 𝑃 ) ) )
44 7 8 19 4 13 11 9 17 15 catcocl ( 𝜑 → ( 𝐾 ( ⟨ 𝑆 , 𝑍 ⟩ ( comp ‘ 𝐶 ) 𝑋 ) 𝑃 ) ∈ ( 𝑆 𝐻 𝑋 ) )
45 1 4 7 8 9 10 13 14 19 44 29 hof2val ( 𝜑 → ( ( 𝐾 ( ⟨ 𝑆 , 𝑍 ⟩ ( comp ‘ 𝐶 ) 𝑋 ) 𝑃 ) ( ⟨ 𝑋 , 𝑌 ⟩ ( 2nd𝑀 ) ⟨ 𝑆 , 𝑇 ⟩ ) ( 𝑄 ( ⟨ 𝑌 , 𝑊 ⟩ ( comp ‘ 𝐶 ) 𝑇 ) 𝐿 ) ) = ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ↦ ( ( ( 𝑄 ( ⟨ 𝑌 , 𝑊 ⟩ ( comp ‘ 𝐶 ) 𝑇 ) 𝐿 ) ( ⟨ 𝑋 , 𝑌 ⟩ ( comp ‘ 𝐶 ) 𝑇 ) 𝑓 ) ( ⟨ 𝑆 , 𝑋 ⟩ ( comp ‘ 𝐶 ) 𝑇 ) ( 𝐾 ( ⟨ 𝑆 , 𝑍 ⟩ ( comp ‘ 𝐶 ) 𝑋 ) 𝑃 ) ) ) )
46 1 4 7 8 11 12 13 14 19 17 18 hof2val ( 𝜑 → ( 𝑃 ( ⟨ 𝑍 , 𝑊 ⟩ ( 2nd𝑀 ) ⟨ 𝑆 , 𝑇 ⟩ ) 𝑄 ) = ( 𝑔 ∈ ( 𝑍 𝐻 𝑊 ) ↦ ( ( 𝑄 ( ⟨ 𝑍 , 𝑊 ⟩ ( comp ‘ 𝐶 ) 𝑇 ) 𝑔 ) ( ⟨ 𝑆 , 𝑍 ⟩ ( comp ‘ 𝐶 ) 𝑇 ) 𝑃 ) ) )
47 1 4 7 8 9 10 11 12 19 15 16 hof2val ( 𝜑 → ( 𝐾 ( ⟨ 𝑋 , 𝑌 ⟩ ( 2nd𝑀 ) ⟨ 𝑍 , 𝑊 ⟩ ) 𝐿 ) = ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ↦ ( ( 𝐿 ( ⟨ 𝑋 , 𝑌 ⟩ ( comp ‘ 𝐶 ) 𝑊 ) 𝑓 ) ( ⟨ 𝑍 , 𝑋 ⟩ ( comp ‘ 𝐶 ) 𝑊 ) 𝐾 ) ) )
48 46 47 oveq12d ( 𝜑 → ( ( 𝑃 ( ⟨ 𝑍 , 𝑊 ⟩ ( 2nd𝑀 ) ⟨ 𝑆 , 𝑇 ⟩ ) 𝑄 ) ( ⟨ ( 𝑋 𝐻 𝑌 ) , ( 𝑍 𝐻 𝑊 ) ⟩ ( comp ‘ 𝐷 ) ( 𝑆 𝐻 𝑇 ) ) ( 𝐾 ( ⟨ 𝑋 , 𝑌 ⟩ ( 2nd𝑀 ) ⟨ 𝑍 , 𝑊 ⟩ ) 𝐿 ) ) = ( ( 𝑔 ∈ ( 𝑍 𝐻 𝑊 ) ↦ ( ( 𝑄 ( ⟨ 𝑍 , 𝑊 ⟩ ( comp ‘ 𝐶 ) 𝑇 ) 𝑔 ) ( ⟨ 𝑆 , 𝑍 ⟩ ( comp ‘ 𝐶 ) 𝑇 ) 𝑃 ) ) ( ⟨ ( 𝑋 𝐻 𝑌 ) , ( 𝑍 𝐻 𝑊 ) ⟩ ( comp ‘ 𝐷 ) ( 𝑆 𝐻 𝑇 ) ) ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ↦ ( ( 𝐿 ( ⟨ 𝑋 , 𝑌 ⟩ ( comp ‘ 𝐶 ) 𝑊 ) 𝑓 ) ( ⟨ 𝑍 , 𝑋 ⟩ ( comp ‘ 𝐶 ) 𝑊 ) 𝐾 ) ) ) )
49 eqid ( comp ‘ 𝐷 ) = ( comp ‘ 𝐷 )
50 eqid ( Homf𝐶 ) = ( Homf𝐶 )
51 50 7 8 9 10 homfval ( 𝜑 → ( 𝑋 ( Homf𝐶 ) 𝑌 ) = ( 𝑋 𝐻 𝑌 ) )
52 50 7 homffn ( Homf𝐶 ) Fn ( 𝐵 × 𝐵 )
53 52 a1i ( 𝜑 → ( Homf𝐶 ) Fn ( 𝐵 × 𝐵 ) )
54 df-f ( ( Homf𝐶 ) : ( 𝐵 × 𝐵 ) ⟶ 𝑈 ↔ ( ( Homf𝐶 ) Fn ( 𝐵 × 𝐵 ) ∧ ran ( Homf𝐶 ) ⊆ 𝑈 ) )
55 53 6 54 sylanbrc ( 𝜑 → ( Homf𝐶 ) : ( 𝐵 × 𝐵 ) ⟶ 𝑈 )
56 55 9 10 fovrnd ( 𝜑 → ( 𝑋 ( Homf𝐶 ) 𝑌 ) ∈ 𝑈 )
57 51 56 eqeltrrd ( 𝜑 → ( 𝑋 𝐻 𝑌 ) ∈ 𝑈 )
58 50 7 8 11 12 homfval ( 𝜑 → ( 𝑍 ( Homf𝐶 ) 𝑊 ) = ( 𝑍 𝐻 𝑊 ) )
59 55 11 12 fovrnd ( 𝜑 → ( 𝑍 ( Homf𝐶 ) 𝑊 ) ∈ 𝑈 )
60 58 59 eqeltrrd ( 𝜑 → ( 𝑍 𝐻 𝑊 ) ∈ 𝑈 )
61 50 7 8 13 14 homfval ( 𝜑 → ( 𝑆 ( Homf𝐶 ) 𝑇 ) = ( 𝑆 𝐻 𝑇 ) )
62 55 13 14 fovrnd ( 𝜑 → ( 𝑆 ( Homf𝐶 ) 𝑇 ) ∈ 𝑈 )
63 61 62 eqeltrrd ( 𝜑 → ( 𝑆 𝐻 𝑇 ) ∈ 𝑈 )
64 7 8 19 20 22 23 33 25 38 catcocl ( ( 𝜑𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) → ( ( 𝐿 ( ⟨ 𝑋 , 𝑌 ⟩ ( comp ‘ 𝐶 ) 𝑊 ) 𝑓 ) ( ⟨ 𝑍 , 𝑋 ⟩ ( comp ‘ 𝐶 ) 𝑊 ) 𝐾 ) ∈ ( 𝑍 𝐻 𝑊 ) )
65 64 fmpttd ( 𝜑 → ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ↦ ( ( 𝐿 ( ⟨ 𝑋 , 𝑌 ⟩ ( comp ‘ 𝐶 ) 𝑊 ) 𝑓 ) ( ⟨ 𝑍 , 𝑋 ⟩ ( comp ‘ 𝐶 ) 𝑊 ) 𝐾 ) ) : ( 𝑋 𝐻 𝑌 ) ⟶ ( 𝑍 𝐻 𝑊 ) )
66 4 adantr ( ( 𝜑𝑔 ∈ ( 𝑍 𝐻 𝑊 ) ) → 𝐶 ∈ Cat )
67 13 adantr ( ( 𝜑𝑔 ∈ ( 𝑍 𝐻 𝑊 ) ) → 𝑆𝐵 )
68 11 adantr ( ( 𝜑𝑔 ∈ ( 𝑍 𝐻 𝑊 ) ) → 𝑍𝐵 )
69 14 adantr ( ( 𝜑𝑔 ∈ ( 𝑍 𝐻 𝑊 ) ) → 𝑇𝐵 )
70 17 adantr ( ( 𝜑𝑔 ∈ ( 𝑍 𝐻 𝑊 ) ) → 𝑃 ∈ ( 𝑆 𝐻 𝑍 ) )
71 12 adantr ( ( 𝜑𝑔 ∈ ( 𝑍 𝐻 𝑊 ) ) → 𝑊𝐵 )
72 simpr ( ( 𝜑𝑔 ∈ ( 𝑍 𝐻 𝑊 ) ) → 𝑔 ∈ ( 𝑍 𝐻 𝑊 ) )
73 18 adantr ( ( 𝜑𝑔 ∈ ( 𝑍 𝐻 𝑊 ) ) → 𝑄 ∈ ( 𝑊 𝐻 𝑇 ) )
74 7 8 19 66 68 71 69 72 73 catcocl ( ( 𝜑𝑔 ∈ ( 𝑍 𝐻 𝑊 ) ) → ( 𝑄 ( ⟨ 𝑍 , 𝑊 ⟩ ( comp ‘ 𝐶 ) 𝑇 ) 𝑔 ) ∈ ( 𝑍 𝐻 𝑇 ) )
75 7 8 19 66 67 68 69 70 74 catcocl ( ( 𝜑𝑔 ∈ ( 𝑍 𝐻 𝑊 ) ) → ( ( 𝑄 ( ⟨ 𝑍 , 𝑊 ⟩ ( comp ‘ 𝐶 ) 𝑇 ) 𝑔 ) ( ⟨ 𝑆 , 𝑍 ⟩ ( comp ‘ 𝐶 ) 𝑇 ) 𝑃 ) ∈ ( 𝑆 𝐻 𝑇 ) )
76 75 fmpttd ( 𝜑 → ( 𝑔 ∈ ( 𝑍 𝐻 𝑊 ) ↦ ( ( 𝑄 ( ⟨ 𝑍 , 𝑊 ⟩ ( comp ‘ 𝐶 ) 𝑇 ) 𝑔 ) ( ⟨ 𝑆 , 𝑍 ⟩ ( comp ‘ 𝐶 ) 𝑇 ) 𝑃 ) ) : ( 𝑍 𝐻 𝑊 ) ⟶ ( 𝑆 𝐻 𝑇 ) )
77 3 5 49 57 60 63 65 76 setcco ( 𝜑 → ( ( 𝑔 ∈ ( 𝑍 𝐻 𝑊 ) ↦ ( ( 𝑄 ( ⟨ 𝑍 , 𝑊 ⟩ ( comp ‘ 𝐶 ) 𝑇 ) 𝑔 ) ( ⟨ 𝑆 , 𝑍 ⟩ ( comp ‘ 𝐶 ) 𝑇 ) 𝑃 ) ) ( ⟨ ( 𝑋 𝐻 𝑌 ) , ( 𝑍 𝐻 𝑊 ) ⟩ ( comp ‘ 𝐷 ) ( 𝑆 𝐻 𝑇 ) ) ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ↦ ( ( 𝐿 ( ⟨ 𝑋 , 𝑌 ⟩ ( comp ‘ 𝐶 ) 𝑊 ) 𝑓 ) ( ⟨ 𝑍 , 𝑋 ⟩ ( comp ‘ 𝐶 ) 𝑊 ) 𝐾 ) ) ) = ( ( 𝑔 ∈ ( 𝑍 𝐻 𝑊 ) ↦ ( ( 𝑄 ( ⟨ 𝑍 , 𝑊 ⟩ ( comp ‘ 𝐶 ) 𝑇 ) 𝑔 ) ( ⟨ 𝑆 , 𝑍 ⟩ ( comp ‘ 𝐶 ) 𝑇 ) 𝑃 ) ) ∘ ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ↦ ( ( 𝐿 ( ⟨ 𝑋 , 𝑌 ⟩ ( comp ‘ 𝐶 ) 𝑊 ) 𝑓 ) ( ⟨ 𝑍 , 𝑋 ⟩ ( comp ‘ 𝐶 ) 𝑊 ) 𝐾 ) ) ) )
78 eqidd ( 𝜑 → ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ↦ ( ( 𝐿 ( ⟨ 𝑋 , 𝑌 ⟩ ( comp ‘ 𝐶 ) 𝑊 ) 𝑓 ) ( ⟨ 𝑍 , 𝑋 ⟩ ( comp ‘ 𝐶 ) 𝑊 ) 𝐾 ) ) = ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ↦ ( ( 𝐿 ( ⟨ 𝑋 , 𝑌 ⟩ ( comp ‘ 𝐶 ) 𝑊 ) 𝑓 ) ( ⟨ 𝑍 , 𝑋 ⟩ ( comp ‘ 𝐶 ) 𝑊 ) 𝐾 ) ) )
79 eqidd ( 𝜑 → ( 𝑔 ∈ ( 𝑍 𝐻 𝑊 ) ↦ ( ( 𝑄 ( ⟨ 𝑍 , 𝑊 ⟩ ( comp ‘ 𝐶 ) 𝑇 ) 𝑔 ) ( ⟨ 𝑆 , 𝑍 ⟩ ( comp ‘ 𝐶 ) 𝑇 ) 𝑃 ) ) = ( 𝑔 ∈ ( 𝑍 𝐻 𝑊 ) ↦ ( ( 𝑄 ( ⟨ 𝑍 , 𝑊 ⟩ ( comp ‘ 𝐶 ) 𝑇 ) 𝑔 ) ( ⟨ 𝑆 , 𝑍 ⟩ ( comp ‘ 𝐶 ) 𝑇 ) 𝑃 ) ) )
80 oveq2 ( 𝑔 = ( ( 𝐿 ( ⟨ 𝑋 , 𝑌 ⟩ ( comp ‘ 𝐶 ) 𝑊 ) 𝑓 ) ( ⟨ 𝑍 , 𝑋 ⟩ ( comp ‘ 𝐶 ) 𝑊 ) 𝐾 ) → ( 𝑄 ( ⟨ 𝑍 , 𝑊 ⟩ ( comp ‘ 𝐶 ) 𝑇 ) 𝑔 ) = ( 𝑄 ( ⟨ 𝑍 , 𝑊 ⟩ ( comp ‘ 𝐶 ) 𝑇 ) ( ( 𝐿 ( ⟨ 𝑋 , 𝑌 ⟩ ( comp ‘ 𝐶 ) 𝑊 ) 𝑓 ) ( ⟨ 𝑍 , 𝑋 ⟩ ( comp ‘ 𝐶 ) 𝑊 ) 𝐾 ) ) )
81 80 oveq1d ( 𝑔 = ( ( 𝐿 ( ⟨ 𝑋 , 𝑌 ⟩ ( comp ‘ 𝐶 ) 𝑊 ) 𝑓 ) ( ⟨ 𝑍 , 𝑋 ⟩ ( comp ‘ 𝐶 ) 𝑊 ) 𝐾 ) → ( ( 𝑄 ( ⟨ 𝑍 , 𝑊 ⟩ ( comp ‘ 𝐶 ) 𝑇 ) 𝑔 ) ( ⟨ 𝑆 , 𝑍 ⟩ ( comp ‘ 𝐶 ) 𝑇 ) 𝑃 ) = ( ( 𝑄 ( ⟨ 𝑍 , 𝑊 ⟩ ( comp ‘ 𝐶 ) 𝑇 ) ( ( 𝐿 ( ⟨ 𝑋 , 𝑌 ⟩ ( comp ‘ 𝐶 ) 𝑊 ) 𝑓 ) ( ⟨ 𝑍 , 𝑋 ⟩ ( comp ‘ 𝐶 ) 𝑊 ) 𝐾 ) ) ( ⟨ 𝑆 , 𝑍 ⟩ ( comp ‘ 𝐶 ) 𝑇 ) 𝑃 ) )
82 64 78 79 81 fmptco ( 𝜑 → ( ( 𝑔 ∈ ( 𝑍 𝐻 𝑊 ) ↦ ( ( 𝑄 ( ⟨ 𝑍 , 𝑊 ⟩ ( comp ‘ 𝐶 ) 𝑇 ) 𝑔 ) ( ⟨ 𝑆 , 𝑍 ⟩ ( comp ‘ 𝐶 ) 𝑇 ) 𝑃 ) ) ∘ ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ↦ ( ( 𝐿 ( ⟨ 𝑋 , 𝑌 ⟩ ( comp ‘ 𝐶 ) 𝑊 ) 𝑓 ) ( ⟨ 𝑍 , 𝑋 ⟩ ( comp ‘ 𝐶 ) 𝑊 ) 𝐾 ) ) ) = ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ↦ ( ( 𝑄 ( ⟨ 𝑍 , 𝑊 ⟩ ( comp ‘ 𝐶 ) 𝑇 ) ( ( 𝐿 ( ⟨ 𝑋 , 𝑌 ⟩ ( comp ‘ 𝐶 ) 𝑊 ) 𝑓 ) ( ⟨ 𝑍 , 𝑋 ⟩ ( comp ‘ 𝐶 ) 𝑊 ) 𝐾 ) ) ( ⟨ 𝑆 , 𝑍 ⟩ ( comp ‘ 𝐶 ) 𝑇 ) 𝑃 ) ) )
83 48 77 82 3eqtrd ( 𝜑 → ( ( 𝑃 ( ⟨ 𝑍 , 𝑊 ⟩ ( 2nd𝑀 ) ⟨ 𝑆 , 𝑇 ⟩ ) 𝑄 ) ( ⟨ ( 𝑋 𝐻 𝑌 ) , ( 𝑍 𝐻 𝑊 ) ⟩ ( comp ‘ 𝐷 ) ( 𝑆 𝐻 𝑇 ) ) ( 𝐾 ( ⟨ 𝑋 , 𝑌 ⟩ ( 2nd𝑀 ) ⟨ 𝑍 , 𝑊 ⟩ ) 𝐿 ) ) = ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ↦ ( ( 𝑄 ( ⟨ 𝑍 , 𝑊 ⟩ ( comp ‘ 𝐶 ) 𝑇 ) ( ( 𝐿 ( ⟨ 𝑋 , 𝑌 ⟩ ( comp ‘ 𝐶 ) 𝑊 ) 𝑓 ) ( ⟨ 𝑍 , 𝑋 ⟩ ( comp ‘ 𝐶 ) 𝑊 ) 𝐾 ) ) ( ⟨ 𝑆 , 𝑍 ⟩ ( comp ‘ 𝐶 ) 𝑇 ) 𝑃 ) ) )
84 43 45 83 3eqtr4d ( 𝜑 → ( ( 𝐾 ( ⟨ 𝑆 , 𝑍 ⟩ ( comp ‘ 𝐶 ) 𝑋 ) 𝑃 ) ( ⟨ 𝑋 , 𝑌 ⟩ ( 2nd𝑀 ) ⟨ 𝑆 , 𝑇 ⟩ ) ( 𝑄 ( ⟨ 𝑌 , 𝑊 ⟩ ( comp ‘ 𝐶 ) 𝑇 ) 𝐿 ) ) = ( ( 𝑃 ( ⟨ 𝑍 , 𝑊 ⟩ ( 2nd𝑀 ) ⟨ 𝑆 , 𝑇 ⟩ ) 𝑄 ) ( ⟨ ( 𝑋 𝐻 𝑌 ) , ( 𝑍 𝐻 𝑊 ) ⟩ ( comp ‘ 𝐷 ) ( 𝑆 𝐻 𝑇 ) ) ( 𝐾 ( ⟨ 𝑋 , 𝑌 ⟩ ( 2nd𝑀 ) ⟨ 𝑍 , 𝑊 ⟩ ) 𝐿 ) ) )