Step |
Hyp |
Ref |
Expression |
1 |
|
hofcl.m |
⊢ 𝑀 = ( HomF ‘ 𝐶 ) |
2 |
|
hofcl.o |
⊢ 𝑂 = ( oppCat ‘ 𝐶 ) |
3 |
|
hofcl.d |
⊢ 𝐷 = ( SetCat ‘ 𝑈 ) |
4 |
|
hofcl.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
5 |
|
hofcl.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) |
6 |
|
hofcl.h |
⊢ ( 𝜑 → ran ( Homf ‘ 𝐶 ) ⊆ 𝑈 ) |
7 |
|
hofcllem.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
8 |
|
hofcllem.h |
⊢ 𝐻 = ( Hom ‘ 𝐶 ) |
9 |
|
hofcllem.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
10 |
|
hofcllem.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
11 |
|
hofcllem.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) |
12 |
|
hofcllem.w |
⊢ ( 𝜑 → 𝑊 ∈ 𝐵 ) |
13 |
|
hofcllem.s |
⊢ ( 𝜑 → 𝑆 ∈ 𝐵 ) |
14 |
|
hofcllem.t |
⊢ ( 𝜑 → 𝑇 ∈ 𝐵 ) |
15 |
|
hofcllem.m |
⊢ ( 𝜑 → 𝐾 ∈ ( 𝑍 𝐻 𝑋 ) ) |
16 |
|
hofcllem.n |
⊢ ( 𝜑 → 𝐿 ∈ ( 𝑌 𝐻 𝑊 ) ) |
17 |
|
hofcllem.p |
⊢ ( 𝜑 → 𝑃 ∈ ( 𝑆 𝐻 𝑍 ) ) |
18 |
|
hofcllem.q |
⊢ ( 𝜑 → 𝑄 ∈ ( 𝑊 𝐻 𝑇 ) ) |
19 |
|
eqid |
⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) |
20 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) → 𝐶 ∈ Cat ) |
21 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) → 𝑆 ∈ 𝐵 ) |
22 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) → 𝑍 ∈ 𝐵 ) |
23 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) → 𝑋 ∈ 𝐵 ) |
24 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) → 𝑃 ∈ ( 𝑆 𝐻 𝑍 ) ) |
25 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) → 𝐾 ∈ ( 𝑍 𝐻 𝑋 ) ) |
26 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) → 𝑇 ∈ 𝐵 ) |
27 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) → 𝑌 ∈ 𝐵 ) |
28 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) → 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) |
29 |
7 8 19 4 10 12 14 16 18
|
catcocl |
⊢ ( 𝜑 → ( 𝑄 ( 〈 𝑌 , 𝑊 〉 ( comp ‘ 𝐶 ) 𝑇 ) 𝐿 ) ∈ ( 𝑌 𝐻 𝑇 ) ) |
30 |
29
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) → ( 𝑄 ( 〈 𝑌 , 𝑊 〉 ( comp ‘ 𝐶 ) 𝑇 ) 𝐿 ) ∈ ( 𝑌 𝐻 𝑇 ) ) |
31 |
7 8 19 20 23 27 26 28 30
|
catcocl |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) → ( ( 𝑄 ( 〈 𝑌 , 𝑊 〉 ( comp ‘ 𝐶 ) 𝑇 ) 𝐿 ) ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑇 ) 𝑓 ) ∈ ( 𝑋 𝐻 𝑇 ) ) |
32 |
7 8 19 20 21 22 23 24 25 26 31
|
catass |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) → ( ( ( ( 𝑄 ( 〈 𝑌 , 𝑊 〉 ( comp ‘ 𝐶 ) 𝑇 ) 𝐿 ) ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑇 ) 𝑓 ) ( 〈 𝑍 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑇 ) 𝐾 ) ( 〈 𝑆 , 𝑍 〉 ( comp ‘ 𝐶 ) 𝑇 ) 𝑃 ) = ( ( ( 𝑄 ( 〈 𝑌 , 𝑊 〉 ( comp ‘ 𝐶 ) 𝑇 ) 𝐿 ) ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑇 ) 𝑓 ) ( 〈 𝑆 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑇 ) ( 𝐾 ( 〈 𝑆 , 𝑍 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝑃 ) ) ) |
33 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) → 𝑊 ∈ 𝐵 ) |
34 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) → 𝐿 ∈ ( 𝑌 𝐻 𝑊 ) ) |
35 |
18
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) → 𝑄 ∈ ( 𝑊 𝐻 𝑇 ) ) |
36 |
7 8 19 20 23 27 33 28 34 26 35
|
catass |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) → ( ( 𝑄 ( 〈 𝑌 , 𝑊 〉 ( comp ‘ 𝐶 ) 𝑇 ) 𝐿 ) ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑇 ) 𝑓 ) = ( 𝑄 ( 〈 𝑋 , 𝑊 〉 ( comp ‘ 𝐶 ) 𝑇 ) ( 𝐿 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑊 ) 𝑓 ) ) ) |
37 |
36
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) → ( ( ( 𝑄 ( 〈 𝑌 , 𝑊 〉 ( comp ‘ 𝐶 ) 𝑇 ) 𝐿 ) ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑇 ) 𝑓 ) ( 〈 𝑍 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑇 ) 𝐾 ) = ( ( 𝑄 ( 〈 𝑋 , 𝑊 〉 ( comp ‘ 𝐶 ) 𝑇 ) ( 𝐿 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑊 ) 𝑓 ) ) ( 〈 𝑍 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑇 ) 𝐾 ) ) |
38 |
7 8 19 20 23 27 33 28 34
|
catcocl |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) → ( 𝐿 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑊 ) 𝑓 ) ∈ ( 𝑋 𝐻 𝑊 ) ) |
39 |
7 8 19 20 22 23 33 25 38 26 35
|
catass |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) → ( ( 𝑄 ( 〈 𝑋 , 𝑊 〉 ( comp ‘ 𝐶 ) 𝑇 ) ( 𝐿 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑊 ) 𝑓 ) ) ( 〈 𝑍 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑇 ) 𝐾 ) = ( 𝑄 ( 〈 𝑍 , 𝑊 〉 ( comp ‘ 𝐶 ) 𝑇 ) ( ( 𝐿 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑊 ) 𝑓 ) ( 〈 𝑍 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑊 ) 𝐾 ) ) ) |
40 |
37 39
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) → ( ( ( 𝑄 ( 〈 𝑌 , 𝑊 〉 ( comp ‘ 𝐶 ) 𝑇 ) 𝐿 ) ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑇 ) 𝑓 ) ( 〈 𝑍 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑇 ) 𝐾 ) = ( 𝑄 ( 〈 𝑍 , 𝑊 〉 ( comp ‘ 𝐶 ) 𝑇 ) ( ( 𝐿 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑊 ) 𝑓 ) ( 〈 𝑍 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑊 ) 𝐾 ) ) ) |
41 |
40
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) → ( ( ( ( 𝑄 ( 〈 𝑌 , 𝑊 〉 ( comp ‘ 𝐶 ) 𝑇 ) 𝐿 ) ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑇 ) 𝑓 ) ( 〈 𝑍 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑇 ) 𝐾 ) ( 〈 𝑆 , 𝑍 〉 ( comp ‘ 𝐶 ) 𝑇 ) 𝑃 ) = ( ( 𝑄 ( 〈 𝑍 , 𝑊 〉 ( comp ‘ 𝐶 ) 𝑇 ) ( ( 𝐿 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑊 ) 𝑓 ) ( 〈 𝑍 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑊 ) 𝐾 ) ) ( 〈 𝑆 , 𝑍 〉 ( comp ‘ 𝐶 ) 𝑇 ) 𝑃 ) ) |
42 |
32 41
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) → ( ( ( 𝑄 ( 〈 𝑌 , 𝑊 〉 ( comp ‘ 𝐶 ) 𝑇 ) 𝐿 ) ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑇 ) 𝑓 ) ( 〈 𝑆 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑇 ) ( 𝐾 ( 〈 𝑆 , 𝑍 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝑃 ) ) = ( ( 𝑄 ( 〈 𝑍 , 𝑊 〉 ( comp ‘ 𝐶 ) 𝑇 ) ( ( 𝐿 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑊 ) 𝑓 ) ( 〈 𝑍 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑊 ) 𝐾 ) ) ( 〈 𝑆 , 𝑍 〉 ( comp ‘ 𝐶 ) 𝑇 ) 𝑃 ) ) |
43 |
42
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ↦ ( ( ( 𝑄 ( 〈 𝑌 , 𝑊 〉 ( comp ‘ 𝐶 ) 𝑇 ) 𝐿 ) ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑇 ) 𝑓 ) ( 〈 𝑆 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑇 ) ( 𝐾 ( 〈 𝑆 , 𝑍 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝑃 ) ) ) = ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ↦ ( ( 𝑄 ( 〈 𝑍 , 𝑊 〉 ( comp ‘ 𝐶 ) 𝑇 ) ( ( 𝐿 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑊 ) 𝑓 ) ( 〈 𝑍 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑊 ) 𝐾 ) ) ( 〈 𝑆 , 𝑍 〉 ( comp ‘ 𝐶 ) 𝑇 ) 𝑃 ) ) ) |
44 |
7 8 19 4 13 11 9 17 15
|
catcocl |
⊢ ( 𝜑 → ( 𝐾 ( 〈 𝑆 , 𝑍 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝑃 ) ∈ ( 𝑆 𝐻 𝑋 ) ) |
45 |
1 4 7 8 9 10 13 14 19 44 29
|
hof2val |
⊢ ( 𝜑 → ( ( 𝐾 ( 〈 𝑆 , 𝑍 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝑃 ) ( 〈 𝑋 , 𝑌 〉 ( 2nd ‘ 𝑀 ) 〈 𝑆 , 𝑇 〉 ) ( 𝑄 ( 〈 𝑌 , 𝑊 〉 ( comp ‘ 𝐶 ) 𝑇 ) 𝐿 ) ) = ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ↦ ( ( ( 𝑄 ( 〈 𝑌 , 𝑊 〉 ( comp ‘ 𝐶 ) 𝑇 ) 𝐿 ) ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑇 ) 𝑓 ) ( 〈 𝑆 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑇 ) ( 𝐾 ( 〈 𝑆 , 𝑍 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝑃 ) ) ) ) |
46 |
1 4 7 8 11 12 13 14 19 17 18
|
hof2val |
⊢ ( 𝜑 → ( 𝑃 ( 〈 𝑍 , 𝑊 〉 ( 2nd ‘ 𝑀 ) 〈 𝑆 , 𝑇 〉 ) 𝑄 ) = ( 𝑔 ∈ ( 𝑍 𝐻 𝑊 ) ↦ ( ( 𝑄 ( 〈 𝑍 , 𝑊 〉 ( comp ‘ 𝐶 ) 𝑇 ) 𝑔 ) ( 〈 𝑆 , 𝑍 〉 ( comp ‘ 𝐶 ) 𝑇 ) 𝑃 ) ) ) |
47 |
1 4 7 8 9 10 11 12 19 15 16
|
hof2val |
⊢ ( 𝜑 → ( 𝐾 ( 〈 𝑋 , 𝑌 〉 ( 2nd ‘ 𝑀 ) 〈 𝑍 , 𝑊 〉 ) 𝐿 ) = ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ↦ ( ( 𝐿 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑊 ) 𝑓 ) ( 〈 𝑍 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑊 ) 𝐾 ) ) ) |
48 |
46 47
|
oveq12d |
⊢ ( 𝜑 → ( ( 𝑃 ( 〈 𝑍 , 𝑊 〉 ( 2nd ‘ 𝑀 ) 〈 𝑆 , 𝑇 〉 ) 𝑄 ) ( 〈 ( 𝑋 𝐻 𝑌 ) , ( 𝑍 𝐻 𝑊 ) 〉 ( comp ‘ 𝐷 ) ( 𝑆 𝐻 𝑇 ) ) ( 𝐾 ( 〈 𝑋 , 𝑌 〉 ( 2nd ‘ 𝑀 ) 〈 𝑍 , 𝑊 〉 ) 𝐿 ) ) = ( ( 𝑔 ∈ ( 𝑍 𝐻 𝑊 ) ↦ ( ( 𝑄 ( 〈 𝑍 , 𝑊 〉 ( comp ‘ 𝐶 ) 𝑇 ) 𝑔 ) ( 〈 𝑆 , 𝑍 〉 ( comp ‘ 𝐶 ) 𝑇 ) 𝑃 ) ) ( 〈 ( 𝑋 𝐻 𝑌 ) , ( 𝑍 𝐻 𝑊 ) 〉 ( comp ‘ 𝐷 ) ( 𝑆 𝐻 𝑇 ) ) ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ↦ ( ( 𝐿 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑊 ) 𝑓 ) ( 〈 𝑍 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑊 ) 𝐾 ) ) ) ) |
49 |
|
eqid |
⊢ ( comp ‘ 𝐷 ) = ( comp ‘ 𝐷 ) |
50 |
|
eqid |
⊢ ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐶 ) |
51 |
50 7 8 9 10
|
homfval |
⊢ ( 𝜑 → ( 𝑋 ( Homf ‘ 𝐶 ) 𝑌 ) = ( 𝑋 𝐻 𝑌 ) ) |
52 |
50 7
|
homffn |
⊢ ( Homf ‘ 𝐶 ) Fn ( 𝐵 × 𝐵 ) |
53 |
52
|
a1i |
⊢ ( 𝜑 → ( Homf ‘ 𝐶 ) Fn ( 𝐵 × 𝐵 ) ) |
54 |
|
df-f |
⊢ ( ( Homf ‘ 𝐶 ) : ( 𝐵 × 𝐵 ) ⟶ 𝑈 ↔ ( ( Homf ‘ 𝐶 ) Fn ( 𝐵 × 𝐵 ) ∧ ran ( Homf ‘ 𝐶 ) ⊆ 𝑈 ) ) |
55 |
53 6 54
|
sylanbrc |
⊢ ( 𝜑 → ( Homf ‘ 𝐶 ) : ( 𝐵 × 𝐵 ) ⟶ 𝑈 ) |
56 |
55 9 10
|
fovrnd |
⊢ ( 𝜑 → ( 𝑋 ( Homf ‘ 𝐶 ) 𝑌 ) ∈ 𝑈 ) |
57 |
51 56
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑋 𝐻 𝑌 ) ∈ 𝑈 ) |
58 |
50 7 8 11 12
|
homfval |
⊢ ( 𝜑 → ( 𝑍 ( Homf ‘ 𝐶 ) 𝑊 ) = ( 𝑍 𝐻 𝑊 ) ) |
59 |
55 11 12
|
fovrnd |
⊢ ( 𝜑 → ( 𝑍 ( Homf ‘ 𝐶 ) 𝑊 ) ∈ 𝑈 ) |
60 |
58 59
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑍 𝐻 𝑊 ) ∈ 𝑈 ) |
61 |
50 7 8 13 14
|
homfval |
⊢ ( 𝜑 → ( 𝑆 ( Homf ‘ 𝐶 ) 𝑇 ) = ( 𝑆 𝐻 𝑇 ) ) |
62 |
55 13 14
|
fovrnd |
⊢ ( 𝜑 → ( 𝑆 ( Homf ‘ 𝐶 ) 𝑇 ) ∈ 𝑈 ) |
63 |
61 62
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑆 𝐻 𝑇 ) ∈ 𝑈 ) |
64 |
7 8 19 20 22 23 33 25 38
|
catcocl |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) → ( ( 𝐿 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑊 ) 𝑓 ) ( 〈 𝑍 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑊 ) 𝐾 ) ∈ ( 𝑍 𝐻 𝑊 ) ) |
65 |
64
|
fmpttd |
⊢ ( 𝜑 → ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ↦ ( ( 𝐿 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑊 ) 𝑓 ) ( 〈 𝑍 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑊 ) 𝐾 ) ) : ( 𝑋 𝐻 𝑌 ) ⟶ ( 𝑍 𝐻 𝑊 ) ) |
66 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ( 𝑍 𝐻 𝑊 ) ) → 𝐶 ∈ Cat ) |
67 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ( 𝑍 𝐻 𝑊 ) ) → 𝑆 ∈ 𝐵 ) |
68 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ( 𝑍 𝐻 𝑊 ) ) → 𝑍 ∈ 𝐵 ) |
69 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ( 𝑍 𝐻 𝑊 ) ) → 𝑇 ∈ 𝐵 ) |
70 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ( 𝑍 𝐻 𝑊 ) ) → 𝑃 ∈ ( 𝑆 𝐻 𝑍 ) ) |
71 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ( 𝑍 𝐻 𝑊 ) ) → 𝑊 ∈ 𝐵 ) |
72 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ( 𝑍 𝐻 𝑊 ) ) → 𝑔 ∈ ( 𝑍 𝐻 𝑊 ) ) |
73 |
18
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ( 𝑍 𝐻 𝑊 ) ) → 𝑄 ∈ ( 𝑊 𝐻 𝑇 ) ) |
74 |
7 8 19 66 68 71 69 72 73
|
catcocl |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ( 𝑍 𝐻 𝑊 ) ) → ( 𝑄 ( 〈 𝑍 , 𝑊 〉 ( comp ‘ 𝐶 ) 𝑇 ) 𝑔 ) ∈ ( 𝑍 𝐻 𝑇 ) ) |
75 |
7 8 19 66 67 68 69 70 74
|
catcocl |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ( 𝑍 𝐻 𝑊 ) ) → ( ( 𝑄 ( 〈 𝑍 , 𝑊 〉 ( comp ‘ 𝐶 ) 𝑇 ) 𝑔 ) ( 〈 𝑆 , 𝑍 〉 ( comp ‘ 𝐶 ) 𝑇 ) 𝑃 ) ∈ ( 𝑆 𝐻 𝑇 ) ) |
76 |
75
|
fmpttd |
⊢ ( 𝜑 → ( 𝑔 ∈ ( 𝑍 𝐻 𝑊 ) ↦ ( ( 𝑄 ( 〈 𝑍 , 𝑊 〉 ( comp ‘ 𝐶 ) 𝑇 ) 𝑔 ) ( 〈 𝑆 , 𝑍 〉 ( comp ‘ 𝐶 ) 𝑇 ) 𝑃 ) ) : ( 𝑍 𝐻 𝑊 ) ⟶ ( 𝑆 𝐻 𝑇 ) ) |
77 |
3 5 49 57 60 63 65 76
|
setcco |
⊢ ( 𝜑 → ( ( 𝑔 ∈ ( 𝑍 𝐻 𝑊 ) ↦ ( ( 𝑄 ( 〈 𝑍 , 𝑊 〉 ( comp ‘ 𝐶 ) 𝑇 ) 𝑔 ) ( 〈 𝑆 , 𝑍 〉 ( comp ‘ 𝐶 ) 𝑇 ) 𝑃 ) ) ( 〈 ( 𝑋 𝐻 𝑌 ) , ( 𝑍 𝐻 𝑊 ) 〉 ( comp ‘ 𝐷 ) ( 𝑆 𝐻 𝑇 ) ) ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ↦ ( ( 𝐿 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑊 ) 𝑓 ) ( 〈 𝑍 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑊 ) 𝐾 ) ) ) = ( ( 𝑔 ∈ ( 𝑍 𝐻 𝑊 ) ↦ ( ( 𝑄 ( 〈 𝑍 , 𝑊 〉 ( comp ‘ 𝐶 ) 𝑇 ) 𝑔 ) ( 〈 𝑆 , 𝑍 〉 ( comp ‘ 𝐶 ) 𝑇 ) 𝑃 ) ) ∘ ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ↦ ( ( 𝐿 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑊 ) 𝑓 ) ( 〈 𝑍 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑊 ) 𝐾 ) ) ) ) |
78 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ↦ ( ( 𝐿 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑊 ) 𝑓 ) ( 〈 𝑍 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑊 ) 𝐾 ) ) = ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ↦ ( ( 𝐿 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑊 ) 𝑓 ) ( 〈 𝑍 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑊 ) 𝐾 ) ) ) |
79 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑔 ∈ ( 𝑍 𝐻 𝑊 ) ↦ ( ( 𝑄 ( 〈 𝑍 , 𝑊 〉 ( comp ‘ 𝐶 ) 𝑇 ) 𝑔 ) ( 〈 𝑆 , 𝑍 〉 ( comp ‘ 𝐶 ) 𝑇 ) 𝑃 ) ) = ( 𝑔 ∈ ( 𝑍 𝐻 𝑊 ) ↦ ( ( 𝑄 ( 〈 𝑍 , 𝑊 〉 ( comp ‘ 𝐶 ) 𝑇 ) 𝑔 ) ( 〈 𝑆 , 𝑍 〉 ( comp ‘ 𝐶 ) 𝑇 ) 𝑃 ) ) ) |
80 |
|
oveq2 |
⊢ ( 𝑔 = ( ( 𝐿 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑊 ) 𝑓 ) ( 〈 𝑍 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑊 ) 𝐾 ) → ( 𝑄 ( 〈 𝑍 , 𝑊 〉 ( comp ‘ 𝐶 ) 𝑇 ) 𝑔 ) = ( 𝑄 ( 〈 𝑍 , 𝑊 〉 ( comp ‘ 𝐶 ) 𝑇 ) ( ( 𝐿 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑊 ) 𝑓 ) ( 〈 𝑍 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑊 ) 𝐾 ) ) ) |
81 |
80
|
oveq1d |
⊢ ( 𝑔 = ( ( 𝐿 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑊 ) 𝑓 ) ( 〈 𝑍 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑊 ) 𝐾 ) → ( ( 𝑄 ( 〈 𝑍 , 𝑊 〉 ( comp ‘ 𝐶 ) 𝑇 ) 𝑔 ) ( 〈 𝑆 , 𝑍 〉 ( comp ‘ 𝐶 ) 𝑇 ) 𝑃 ) = ( ( 𝑄 ( 〈 𝑍 , 𝑊 〉 ( comp ‘ 𝐶 ) 𝑇 ) ( ( 𝐿 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑊 ) 𝑓 ) ( 〈 𝑍 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑊 ) 𝐾 ) ) ( 〈 𝑆 , 𝑍 〉 ( comp ‘ 𝐶 ) 𝑇 ) 𝑃 ) ) |
82 |
64 78 79 81
|
fmptco |
⊢ ( 𝜑 → ( ( 𝑔 ∈ ( 𝑍 𝐻 𝑊 ) ↦ ( ( 𝑄 ( 〈 𝑍 , 𝑊 〉 ( comp ‘ 𝐶 ) 𝑇 ) 𝑔 ) ( 〈 𝑆 , 𝑍 〉 ( comp ‘ 𝐶 ) 𝑇 ) 𝑃 ) ) ∘ ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ↦ ( ( 𝐿 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑊 ) 𝑓 ) ( 〈 𝑍 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑊 ) 𝐾 ) ) ) = ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ↦ ( ( 𝑄 ( 〈 𝑍 , 𝑊 〉 ( comp ‘ 𝐶 ) 𝑇 ) ( ( 𝐿 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑊 ) 𝑓 ) ( 〈 𝑍 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑊 ) 𝐾 ) ) ( 〈 𝑆 , 𝑍 〉 ( comp ‘ 𝐶 ) 𝑇 ) 𝑃 ) ) ) |
83 |
48 77 82
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝑃 ( 〈 𝑍 , 𝑊 〉 ( 2nd ‘ 𝑀 ) 〈 𝑆 , 𝑇 〉 ) 𝑄 ) ( 〈 ( 𝑋 𝐻 𝑌 ) , ( 𝑍 𝐻 𝑊 ) 〉 ( comp ‘ 𝐷 ) ( 𝑆 𝐻 𝑇 ) ) ( 𝐾 ( 〈 𝑋 , 𝑌 〉 ( 2nd ‘ 𝑀 ) 〈 𝑍 , 𝑊 〉 ) 𝐿 ) ) = ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ↦ ( ( 𝑄 ( 〈 𝑍 , 𝑊 〉 ( comp ‘ 𝐶 ) 𝑇 ) ( ( 𝐿 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑊 ) 𝑓 ) ( 〈 𝑍 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑊 ) 𝐾 ) ) ( 〈 𝑆 , 𝑍 〉 ( comp ‘ 𝐶 ) 𝑇 ) 𝑃 ) ) ) |
84 |
43 45 83
|
3eqtr4d |
⊢ ( 𝜑 → ( ( 𝐾 ( 〈 𝑆 , 𝑍 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝑃 ) ( 〈 𝑋 , 𝑌 〉 ( 2nd ‘ 𝑀 ) 〈 𝑆 , 𝑇 〉 ) ( 𝑄 ( 〈 𝑌 , 𝑊 〉 ( comp ‘ 𝐶 ) 𝑇 ) 𝐿 ) ) = ( ( 𝑃 ( 〈 𝑍 , 𝑊 〉 ( 2nd ‘ 𝑀 ) 〈 𝑆 , 𝑇 〉 ) 𝑄 ) ( 〈 ( 𝑋 𝐻 𝑌 ) , ( 𝑍 𝐻 𝑊 ) 〉 ( comp ‘ 𝐷 ) ( 𝑆 𝐻 𝑇 ) ) ( 𝐾 ( 〈 𝑋 , 𝑌 〉 ( 2nd ‘ 𝑀 ) 〈 𝑍 , 𝑊 〉 ) 𝐿 ) ) ) |