Metamath Proof Explorer


Theorem hofcl

Description: Closure of the Hom functor. Note that the codomain is the category SetCatU for any universe U which contains each Hom-set. This corresponds to the assertion that C be locally small (with respect to U ). (Contributed by Mario Carneiro, 15-Jan-2017)

Ref Expression
Hypotheses hofcl.m 𝑀 = ( HomF𝐶 )
hofcl.o 𝑂 = ( oppCat ‘ 𝐶 )
hofcl.d 𝐷 = ( SetCat ‘ 𝑈 )
hofcl.c ( 𝜑𝐶 ∈ Cat )
hofcl.u ( 𝜑𝑈𝑉 )
hofcl.h ( 𝜑 → ran ( Homf𝐶 ) ⊆ 𝑈 )
Assertion hofcl ( 𝜑𝑀 ∈ ( ( 𝑂 ×c 𝐶 ) Func 𝐷 ) )

Proof

Step Hyp Ref Expression
1 hofcl.m 𝑀 = ( HomF𝐶 )
2 hofcl.o 𝑂 = ( oppCat ‘ 𝐶 )
3 hofcl.d 𝐷 = ( SetCat ‘ 𝑈 )
4 hofcl.c ( 𝜑𝐶 ∈ Cat )
5 hofcl.u ( 𝜑𝑈𝑉 )
6 hofcl.h ( 𝜑 → ran ( Homf𝐶 ) ⊆ 𝑈 )
7 eqid ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 )
8 eqid ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 )
9 eqid ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 )
10 1 4 7 8 9 hofval ( 𝜑𝑀 = ⟨ ( Homf𝐶 ) , ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) , 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ↦ ( 𝑓 ∈ ( ( 1st𝑦 ) ( Hom ‘ 𝐶 ) ( 1st𝑥 ) ) , 𝑔 ∈ ( ( 2nd𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑦 ) ) ↦ ( ∈ ( ( Hom ‘ 𝐶 ) ‘ 𝑥 ) ↦ ( ( 𝑔 ( 𝑥 ( comp ‘ 𝐶 ) ( 2nd𝑦 ) ) ) ( ⟨ ( 1st𝑦 ) , ( 1st𝑥 ) ⟩ ( comp ‘ 𝐶 ) ( 2nd𝑦 ) ) 𝑓 ) ) ) ) ⟩ )
11 fvex ( Homf𝐶 ) ∈ V
12 fvex ( Base ‘ 𝐶 ) ∈ V
13 12 12 xpex ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∈ V
14 13 13 mpoex ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) , 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ↦ ( 𝑓 ∈ ( ( 1st𝑦 ) ( Hom ‘ 𝐶 ) ( 1st𝑥 ) ) , 𝑔 ∈ ( ( 2nd𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑦 ) ) ↦ ( ∈ ( ( Hom ‘ 𝐶 ) ‘ 𝑥 ) ↦ ( ( 𝑔 ( 𝑥 ( comp ‘ 𝐶 ) ( 2nd𝑦 ) ) ) ( ⟨ ( 1st𝑦 ) , ( 1st𝑥 ) ⟩ ( comp ‘ 𝐶 ) ( 2nd𝑦 ) ) 𝑓 ) ) ) ) ∈ V
15 11 14 op2ndd ( 𝑀 = ⟨ ( Homf𝐶 ) , ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) , 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ↦ ( 𝑓 ∈ ( ( 1st𝑦 ) ( Hom ‘ 𝐶 ) ( 1st𝑥 ) ) , 𝑔 ∈ ( ( 2nd𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑦 ) ) ↦ ( ∈ ( ( Hom ‘ 𝐶 ) ‘ 𝑥 ) ↦ ( ( 𝑔 ( 𝑥 ( comp ‘ 𝐶 ) ( 2nd𝑦 ) ) ) ( ⟨ ( 1st𝑦 ) , ( 1st𝑥 ) ⟩ ( comp ‘ 𝐶 ) ( 2nd𝑦 ) ) 𝑓 ) ) ) ) ⟩ → ( 2nd𝑀 ) = ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) , 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ↦ ( 𝑓 ∈ ( ( 1st𝑦 ) ( Hom ‘ 𝐶 ) ( 1st𝑥 ) ) , 𝑔 ∈ ( ( 2nd𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑦 ) ) ↦ ( ∈ ( ( Hom ‘ 𝐶 ) ‘ 𝑥 ) ↦ ( ( 𝑔 ( 𝑥 ( comp ‘ 𝐶 ) ( 2nd𝑦 ) ) ) ( ⟨ ( 1st𝑦 ) , ( 1st𝑥 ) ⟩ ( comp ‘ 𝐶 ) ( 2nd𝑦 ) ) 𝑓 ) ) ) ) )
16 10 15 syl ( 𝜑 → ( 2nd𝑀 ) = ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) , 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ↦ ( 𝑓 ∈ ( ( 1st𝑦 ) ( Hom ‘ 𝐶 ) ( 1st𝑥 ) ) , 𝑔 ∈ ( ( 2nd𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑦 ) ) ↦ ( ∈ ( ( Hom ‘ 𝐶 ) ‘ 𝑥 ) ↦ ( ( 𝑔 ( 𝑥 ( comp ‘ 𝐶 ) ( 2nd𝑦 ) ) ) ( ⟨ ( 1st𝑦 ) , ( 1st𝑥 ) ⟩ ( comp ‘ 𝐶 ) ( 2nd𝑦 ) ) 𝑓 ) ) ) ) )
17 16 opeq2d ( 𝜑 → ⟨ ( Homf𝐶 ) , ( 2nd𝑀 ) ⟩ = ⟨ ( Homf𝐶 ) , ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) , 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ↦ ( 𝑓 ∈ ( ( 1st𝑦 ) ( Hom ‘ 𝐶 ) ( 1st𝑥 ) ) , 𝑔 ∈ ( ( 2nd𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑦 ) ) ↦ ( ∈ ( ( Hom ‘ 𝐶 ) ‘ 𝑥 ) ↦ ( ( 𝑔 ( 𝑥 ( comp ‘ 𝐶 ) ( 2nd𝑦 ) ) ) ( ⟨ ( 1st𝑦 ) , ( 1st𝑥 ) ⟩ ( comp ‘ 𝐶 ) ( 2nd𝑦 ) ) 𝑓 ) ) ) ) ⟩ )
18 10 17 eqtr4d ( 𝜑𝑀 = ⟨ ( Homf𝐶 ) , ( 2nd𝑀 ) ⟩ )
19 eqid ( 𝑂 ×c 𝐶 ) = ( 𝑂 ×c 𝐶 )
20 2 7 oppcbas ( Base ‘ 𝐶 ) = ( Base ‘ 𝑂 )
21 19 20 7 xpcbas ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) = ( Base ‘ ( 𝑂 ×c 𝐶 ) )
22 eqid ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 )
23 eqid ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) = ( Hom ‘ ( 𝑂 ×c 𝐶 ) )
24 eqid ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 )
25 eqid ( Id ‘ ( 𝑂 ×c 𝐶 ) ) = ( Id ‘ ( 𝑂 ×c 𝐶 ) )
26 eqid ( Id ‘ 𝐷 ) = ( Id ‘ 𝐷 )
27 eqid ( comp ‘ ( 𝑂 ×c 𝐶 ) ) = ( comp ‘ ( 𝑂 ×c 𝐶 ) )
28 eqid ( comp ‘ 𝐷 ) = ( comp ‘ 𝐷 )
29 2 oppccat ( 𝐶 ∈ Cat → 𝑂 ∈ Cat )
30 4 29 syl ( 𝜑𝑂 ∈ Cat )
31 19 30 4 xpccat ( 𝜑 → ( 𝑂 ×c 𝐶 ) ∈ Cat )
32 3 setccat ( 𝑈𝑉𝐷 ∈ Cat )
33 5 32 syl ( 𝜑𝐷 ∈ Cat )
34 eqid ( Homf𝐶 ) = ( Homf𝐶 )
35 34 7 homffn ( Homf𝐶 ) Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) )
36 35 a1i ( 𝜑 → ( Homf𝐶 ) Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) )
37 df-f ( ( Homf𝐶 ) : ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ⟶ 𝑈 ↔ ( ( Homf𝐶 ) Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ ran ( Homf𝐶 ) ⊆ 𝑈 ) )
38 36 6 37 sylanbrc ( 𝜑 → ( Homf𝐶 ) : ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ⟶ 𝑈 )
39 3 5 setcbas ( 𝜑𝑈 = ( Base ‘ 𝐷 ) )
40 39 feq3d ( 𝜑 → ( ( Homf𝐶 ) : ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ⟶ 𝑈 ↔ ( Homf𝐶 ) : ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ⟶ ( Base ‘ 𝐷 ) ) )
41 38 40 mpbid ( 𝜑 → ( Homf𝐶 ) : ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ⟶ ( Base ‘ 𝐷 ) )
42 eqid ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) , 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ↦ ( 𝑓 ∈ ( ( 1st𝑦 ) ( Hom ‘ 𝐶 ) ( 1st𝑥 ) ) , 𝑔 ∈ ( ( 2nd𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑦 ) ) ↦ ( ∈ ( ( Hom ‘ 𝐶 ) ‘ 𝑥 ) ↦ ( ( 𝑔 ( 𝑥 ( comp ‘ 𝐶 ) ( 2nd𝑦 ) ) ) ( ⟨ ( 1st𝑦 ) , ( 1st𝑥 ) ⟩ ( comp ‘ 𝐶 ) ( 2nd𝑦 ) ) 𝑓 ) ) ) ) = ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) , 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ↦ ( 𝑓 ∈ ( ( 1st𝑦 ) ( Hom ‘ 𝐶 ) ( 1st𝑥 ) ) , 𝑔 ∈ ( ( 2nd𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑦 ) ) ↦ ( ∈ ( ( Hom ‘ 𝐶 ) ‘ 𝑥 ) ↦ ( ( 𝑔 ( 𝑥 ( comp ‘ 𝐶 ) ( 2nd𝑦 ) ) ) ( ⟨ ( 1st𝑦 ) , ( 1st𝑥 ) ⟩ ( comp ‘ 𝐶 ) ( 2nd𝑦 ) ) 𝑓 ) ) ) )
43 ovex ( ( 1st𝑦 ) ( Hom ‘ 𝐶 ) ( 1st𝑥 ) ) ∈ V
44 ovex ( ( 2nd𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑦 ) ) ∈ V
45 43 44 mpoex ( 𝑓 ∈ ( ( 1st𝑦 ) ( Hom ‘ 𝐶 ) ( 1st𝑥 ) ) , 𝑔 ∈ ( ( 2nd𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑦 ) ) ↦ ( ∈ ( ( Hom ‘ 𝐶 ) ‘ 𝑥 ) ↦ ( ( 𝑔 ( 𝑥 ( comp ‘ 𝐶 ) ( 2nd𝑦 ) ) ) ( ⟨ ( 1st𝑦 ) , ( 1st𝑥 ) ⟩ ( comp ‘ 𝐶 ) ( 2nd𝑦 ) ) 𝑓 ) ) ) ∈ V
46 42 45 fnmpoi ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) , 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ↦ ( 𝑓 ∈ ( ( 1st𝑦 ) ( Hom ‘ 𝐶 ) ( 1st𝑥 ) ) , 𝑔 ∈ ( ( 2nd𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑦 ) ) ↦ ( ∈ ( ( Hom ‘ 𝐶 ) ‘ 𝑥 ) ↦ ( ( 𝑔 ( 𝑥 ( comp ‘ 𝐶 ) ( 2nd𝑦 ) ) ) ( ⟨ ( 1st𝑦 ) , ( 1st𝑥 ) ⟩ ( comp ‘ 𝐶 ) ( 2nd𝑦 ) ) 𝑓 ) ) ) ) Fn ( ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) × ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) )
47 16 fneq1d ( 𝜑 → ( ( 2nd𝑀 ) Fn ( ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) × ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ↔ ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) , 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ↦ ( 𝑓 ∈ ( ( 1st𝑦 ) ( Hom ‘ 𝐶 ) ( 1st𝑥 ) ) , 𝑔 ∈ ( ( 2nd𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑦 ) ) ↦ ( ∈ ( ( Hom ‘ 𝐶 ) ‘ 𝑥 ) ↦ ( ( 𝑔 ( 𝑥 ( comp ‘ 𝐶 ) ( 2nd𝑦 ) ) ) ( ⟨ ( 1st𝑦 ) , ( 1st𝑥 ) ⟩ ( comp ‘ 𝐶 ) ( 2nd𝑦 ) ) 𝑓 ) ) ) ) Fn ( ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) × ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ) )
48 46 47 mpbiri ( 𝜑 → ( 2nd𝑀 ) Fn ( ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) × ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) )
49 4 ad3antrrr ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ) ∧ ( 𝑓 ∈ ( ( 1st𝑦 ) ( Hom ‘ 𝐶 ) ( 1st𝑥 ) ) ∧ 𝑔 ∈ ( ( 2nd𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑦 ) ) ) ) ∧ ∈ ( ( Hom ‘ 𝐶 ) ‘ 𝑥 ) ) → 𝐶 ∈ Cat )
50 simplrr ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ) ∧ ( 𝑓 ∈ ( ( 1st𝑦 ) ( Hom ‘ 𝐶 ) ( 1st𝑥 ) ) ∧ 𝑔 ∈ ( ( 2nd𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑦 ) ) ) ) → 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) )
51 xp1st ( 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) → ( 1st𝑦 ) ∈ ( Base ‘ 𝐶 ) )
52 50 51 syl ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ) ∧ ( 𝑓 ∈ ( ( 1st𝑦 ) ( Hom ‘ 𝐶 ) ( 1st𝑥 ) ) ∧ 𝑔 ∈ ( ( 2nd𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑦 ) ) ) ) → ( 1st𝑦 ) ∈ ( Base ‘ 𝐶 ) )
53 52 adantr ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ) ∧ ( 𝑓 ∈ ( ( 1st𝑦 ) ( Hom ‘ 𝐶 ) ( 1st𝑥 ) ) ∧ 𝑔 ∈ ( ( 2nd𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑦 ) ) ) ) ∧ ∈ ( ( Hom ‘ 𝐶 ) ‘ 𝑥 ) ) → ( 1st𝑦 ) ∈ ( Base ‘ 𝐶 ) )
54 simplrl ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ) ∧ ( 𝑓 ∈ ( ( 1st𝑦 ) ( Hom ‘ 𝐶 ) ( 1st𝑥 ) ) ∧ 𝑔 ∈ ( ( 2nd𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑦 ) ) ) ) → 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) )
55 xp1st ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) → ( 1st𝑥 ) ∈ ( Base ‘ 𝐶 ) )
56 54 55 syl ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ) ∧ ( 𝑓 ∈ ( ( 1st𝑦 ) ( Hom ‘ 𝐶 ) ( 1st𝑥 ) ) ∧ 𝑔 ∈ ( ( 2nd𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑦 ) ) ) ) → ( 1st𝑥 ) ∈ ( Base ‘ 𝐶 ) )
57 56 adantr ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ) ∧ ( 𝑓 ∈ ( ( 1st𝑦 ) ( Hom ‘ 𝐶 ) ( 1st𝑥 ) ) ∧ 𝑔 ∈ ( ( 2nd𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑦 ) ) ) ) ∧ ∈ ( ( Hom ‘ 𝐶 ) ‘ 𝑥 ) ) → ( 1st𝑥 ) ∈ ( Base ‘ 𝐶 ) )
58 xp2nd ( 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) → ( 2nd𝑦 ) ∈ ( Base ‘ 𝐶 ) )
59 50 58 syl ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ) ∧ ( 𝑓 ∈ ( ( 1st𝑦 ) ( Hom ‘ 𝐶 ) ( 1st𝑥 ) ) ∧ 𝑔 ∈ ( ( 2nd𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑦 ) ) ) ) → ( 2nd𝑦 ) ∈ ( Base ‘ 𝐶 ) )
60 59 adantr ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ) ∧ ( 𝑓 ∈ ( ( 1st𝑦 ) ( Hom ‘ 𝐶 ) ( 1st𝑥 ) ) ∧ 𝑔 ∈ ( ( 2nd𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑦 ) ) ) ) ∧ ∈ ( ( Hom ‘ 𝐶 ) ‘ 𝑥 ) ) → ( 2nd𝑦 ) ∈ ( Base ‘ 𝐶 ) )
61 simplrl ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ) ∧ ( 𝑓 ∈ ( ( 1st𝑦 ) ( Hom ‘ 𝐶 ) ( 1st𝑥 ) ) ∧ 𝑔 ∈ ( ( 2nd𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑦 ) ) ) ) ∧ ∈ ( ( Hom ‘ 𝐶 ) ‘ 𝑥 ) ) → 𝑓 ∈ ( ( 1st𝑦 ) ( Hom ‘ 𝐶 ) ( 1st𝑥 ) ) )
62 1st2nd2 ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) → 𝑥 = ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ )
63 54 62 syl ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ) ∧ ( 𝑓 ∈ ( ( 1st𝑦 ) ( Hom ‘ 𝐶 ) ( 1st𝑥 ) ) ∧ 𝑔 ∈ ( ( 2nd𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑦 ) ) ) ) → 𝑥 = ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ )
64 63 adantr ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ) ∧ ( 𝑓 ∈ ( ( 1st𝑦 ) ( Hom ‘ 𝐶 ) ( 1st𝑥 ) ) ∧ 𝑔 ∈ ( ( 2nd𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑦 ) ) ) ) ∧ ∈ ( ( Hom ‘ 𝐶 ) ‘ 𝑥 ) ) → 𝑥 = ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ )
65 64 oveq1d ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ) ∧ ( 𝑓 ∈ ( ( 1st𝑦 ) ( Hom ‘ 𝐶 ) ( 1st𝑥 ) ) ∧ 𝑔 ∈ ( ( 2nd𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑦 ) ) ) ) ∧ ∈ ( ( Hom ‘ 𝐶 ) ‘ 𝑥 ) ) → ( 𝑥 ( comp ‘ 𝐶 ) ( 2nd𝑦 ) ) = ( ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ ( comp ‘ 𝐶 ) ( 2nd𝑦 ) ) )
66 65 oveqd ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ) ∧ ( 𝑓 ∈ ( ( 1st𝑦 ) ( Hom ‘ 𝐶 ) ( 1st𝑥 ) ) ∧ 𝑔 ∈ ( ( 2nd𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑦 ) ) ) ) ∧ ∈ ( ( Hom ‘ 𝐶 ) ‘ 𝑥 ) ) → ( 𝑔 ( 𝑥 ( comp ‘ 𝐶 ) ( 2nd𝑦 ) ) ) = ( 𝑔 ( ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ ( comp ‘ 𝐶 ) ( 2nd𝑦 ) ) ) )
67 xp2nd ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) → ( 2nd𝑥 ) ∈ ( Base ‘ 𝐶 ) )
68 54 67 syl ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ) ∧ ( 𝑓 ∈ ( ( 1st𝑦 ) ( Hom ‘ 𝐶 ) ( 1st𝑥 ) ) ∧ 𝑔 ∈ ( ( 2nd𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑦 ) ) ) ) → ( 2nd𝑥 ) ∈ ( Base ‘ 𝐶 ) )
69 68 adantr ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ) ∧ ( 𝑓 ∈ ( ( 1st𝑦 ) ( Hom ‘ 𝐶 ) ( 1st𝑥 ) ) ∧ 𝑔 ∈ ( ( 2nd𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑦 ) ) ) ) ∧ ∈ ( ( Hom ‘ 𝐶 ) ‘ 𝑥 ) ) → ( 2nd𝑥 ) ∈ ( Base ‘ 𝐶 ) )
70 63 fveq2d ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ) ∧ ( 𝑓 ∈ ( ( 1st𝑦 ) ( Hom ‘ 𝐶 ) ( 1st𝑥 ) ) ∧ 𝑔 ∈ ( ( 2nd𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑦 ) ) ) ) → ( ( Hom ‘ 𝐶 ) ‘ 𝑥 ) = ( ( Hom ‘ 𝐶 ) ‘ ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ ) )
71 df-ov ( ( 1st𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑥 ) ) = ( ( Hom ‘ 𝐶 ) ‘ ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ )
72 70 71 eqtr4di ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ) ∧ ( 𝑓 ∈ ( ( 1st𝑦 ) ( Hom ‘ 𝐶 ) ( 1st𝑥 ) ) ∧ 𝑔 ∈ ( ( 2nd𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑦 ) ) ) ) → ( ( Hom ‘ 𝐶 ) ‘ 𝑥 ) = ( ( 1st𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑥 ) ) )
73 72 eleq2d ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ) ∧ ( 𝑓 ∈ ( ( 1st𝑦 ) ( Hom ‘ 𝐶 ) ( 1st𝑥 ) ) ∧ 𝑔 ∈ ( ( 2nd𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑦 ) ) ) ) → ( ∈ ( ( Hom ‘ 𝐶 ) ‘ 𝑥 ) ↔ ∈ ( ( 1st𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑥 ) ) ) )
74 73 biimpa ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ) ∧ ( 𝑓 ∈ ( ( 1st𝑦 ) ( Hom ‘ 𝐶 ) ( 1st𝑥 ) ) ∧ 𝑔 ∈ ( ( 2nd𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑦 ) ) ) ) ∧ ∈ ( ( Hom ‘ 𝐶 ) ‘ 𝑥 ) ) → ∈ ( ( 1st𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑥 ) ) )
75 simplrr ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ) ∧ ( 𝑓 ∈ ( ( 1st𝑦 ) ( Hom ‘ 𝐶 ) ( 1st𝑥 ) ) ∧ 𝑔 ∈ ( ( 2nd𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑦 ) ) ) ) ∧ ∈ ( ( Hom ‘ 𝐶 ) ‘ 𝑥 ) ) → 𝑔 ∈ ( ( 2nd𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑦 ) ) )
76 7 8 9 49 57 69 60 74 75 catcocl ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ) ∧ ( 𝑓 ∈ ( ( 1st𝑦 ) ( Hom ‘ 𝐶 ) ( 1st𝑥 ) ) ∧ 𝑔 ∈ ( ( 2nd𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑦 ) ) ) ) ∧ ∈ ( ( Hom ‘ 𝐶 ) ‘ 𝑥 ) ) → ( 𝑔 ( ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ ( comp ‘ 𝐶 ) ( 2nd𝑦 ) ) ) ∈ ( ( 1st𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑦 ) ) )
77 66 76 eqeltrd ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ) ∧ ( 𝑓 ∈ ( ( 1st𝑦 ) ( Hom ‘ 𝐶 ) ( 1st𝑥 ) ) ∧ 𝑔 ∈ ( ( 2nd𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑦 ) ) ) ) ∧ ∈ ( ( Hom ‘ 𝐶 ) ‘ 𝑥 ) ) → ( 𝑔 ( 𝑥 ( comp ‘ 𝐶 ) ( 2nd𝑦 ) ) ) ∈ ( ( 1st𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑦 ) ) )
78 7 8 9 49 53 57 60 61 77 catcocl ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ) ∧ ( 𝑓 ∈ ( ( 1st𝑦 ) ( Hom ‘ 𝐶 ) ( 1st𝑥 ) ) ∧ 𝑔 ∈ ( ( 2nd𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑦 ) ) ) ) ∧ ∈ ( ( Hom ‘ 𝐶 ) ‘ 𝑥 ) ) → ( ( 𝑔 ( 𝑥 ( comp ‘ 𝐶 ) ( 2nd𝑦 ) ) ) ( ⟨ ( 1st𝑦 ) , ( 1st𝑥 ) ⟩ ( comp ‘ 𝐶 ) ( 2nd𝑦 ) ) 𝑓 ) ∈ ( ( 1st𝑦 ) ( Hom ‘ 𝐶 ) ( 2nd𝑦 ) ) )
79 1st2nd2 ( 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) → 𝑦 = ⟨ ( 1st𝑦 ) , ( 2nd𝑦 ) ⟩ )
80 50 79 syl ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ) ∧ ( 𝑓 ∈ ( ( 1st𝑦 ) ( Hom ‘ 𝐶 ) ( 1st𝑥 ) ) ∧ 𝑔 ∈ ( ( 2nd𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑦 ) ) ) ) → 𝑦 = ⟨ ( 1st𝑦 ) , ( 2nd𝑦 ) ⟩ )
81 80 fveq2d ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ) ∧ ( 𝑓 ∈ ( ( 1st𝑦 ) ( Hom ‘ 𝐶 ) ( 1st𝑥 ) ) ∧ 𝑔 ∈ ( ( 2nd𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑦 ) ) ) ) → ( ( Hom ‘ 𝐶 ) ‘ 𝑦 ) = ( ( Hom ‘ 𝐶 ) ‘ ⟨ ( 1st𝑦 ) , ( 2nd𝑦 ) ⟩ ) )
82 df-ov ( ( 1st𝑦 ) ( Hom ‘ 𝐶 ) ( 2nd𝑦 ) ) = ( ( Hom ‘ 𝐶 ) ‘ ⟨ ( 1st𝑦 ) , ( 2nd𝑦 ) ⟩ )
83 81 82 eqtr4di ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ) ∧ ( 𝑓 ∈ ( ( 1st𝑦 ) ( Hom ‘ 𝐶 ) ( 1st𝑥 ) ) ∧ 𝑔 ∈ ( ( 2nd𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑦 ) ) ) ) → ( ( Hom ‘ 𝐶 ) ‘ 𝑦 ) = ( ( 1st𝑦 ) ( Hom ‘ 𝐶 ) ( 2nd𝑦 ) ) )
84 83 adantr ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ) ∧ ( 𝑓 ∈ ( ( 1st𝑦 ) ( Hom ‘ 𝐶 ) ( 1st𝑥 ) ) ∧ 𝑔 ∈ ( ( 2nd𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑦 ) ) ) ) ∧ ∈ ( ( Hom ‘ 𝐶 ) ‘ 𝑥 ) ) → ( ( Hom ‘ 𝐶 ) ‘ 𝑦 ) = ( ( 1st𝑦 ) ( Hom ‘ 𝐶 ) ( 2nd𝑦 ) ) )
85 78 84 eleqtrrd ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ) ∧ ( 𝑓 ∈ ( ( 1st𝑦 ) ( Hom ‘ 𝐶 ) ( 1st𝑥 ) ) ∧ 𝑔 ∈ ( ( 2nd𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑦 ) ) ) ) ∧ ∈ ( ( Hom ‘ 𝐶 ) ‘ 𝑥 ) ) → ( ( 𝑔 ( 𝑥 ( comp ‘ 𝐶 ) ( 2nd𝑦 ) ) ) ( ⟨ ( 1st𝑦 ) , ( 1st𝑥 ) ⟩ ( comp ‘ 𝐶 ) ( 2nd𝑦 ) ) 𝑓 ) ∈ ( ( Hom ‘ 𝐶 ) ‘ 𝑦 ) )
86 85 fmpttd ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ) ∧ ( 𝑓 ∈ ( ( 1st𝑦 ) ( Hom ‘ 𝐶 ) ( 1st𝑥 ) ) ∧ 𝑔 ∈ ( ( 2nd𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑦 ) ) ) ) → ( ∈ ( ( Hom ‘ 𝐶 ) ‘ 𝑥 ) ↦ ( ( 𝑔 ( 𝑥 ( comp ‘ 𝐶 ) ( 2nd𝑦 ) ) ) ( ⟨ ( 1st𝑦 ) , ( 1st𝑥 ) ⟩ ( comp ‘ 𝐶 ) ( 2nd𝑦 ) ) 𝑓 ) ) : ( ( Hom ‘ 𝐶 ) ‘ 𝑥 ) ⟶ ( ( Hom ‘ 𝐶 ) ‘ 𝑦 ) )
87 5 ad2antrr ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ) ∧ ( 𝑓 ∈ ( ( 1st𝑦 ) ( Hom ‘ 𝐶 ) ( 1st𝑥 ) ) ∧ 𝑔 ∈ ( ( 2nd𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑦 ) ) ) ) → 𝑈𝑉 )
88 34 7 8 56 68 homfval ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ) ∧ ( 𝑓 ∈ ( ( 1st𝑦 ) ( Hom ‘ 𝐶 ) ( 1st𝑥 ) ) ∧ 𝑔 ∈ ( ( 2nd𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑦 ) ) ) ) → ( ( 1st𝑥 ) ( Homf𝐶 ) ( 2nd𝑥 ) ) = ( ( 1st𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑥 ) ) )
89 63 fveq2d ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ) ∧ ( 𝑓 ∈ ( ( 1st𝑦 ) ( Hom ‘ 𝐶 ) ( 1st𝑥 ) ) ∧ 𝑔 ∈ ( ( 2nd𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑦 ) ) ) ) → ( ( Homf𝐶 ) ‘ 𝑥 ) = ( ( Homf𝐶 ) ‘ ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ ) )
90 df-ov ( ( 1st𝑥 ) ( Homf𝐶 ) ( 2nd𝑥 ) ) = ( ( Homf𝐶 ) ‘ ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ )
91 89 90 eqtr4di ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ) ∧ ( 𝑓 ∈ ( ( 1st𝑦 ) ( Hom ‘ 𝐶 ) ( 1st𝑥 ) ) ∧ 𝑔 ∈ ( ( 2nd𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑦 ) ) ) ) → ( ( Homf𝐶 ) ‘ 𝑥 ) = ( ( 1st𝑥 ) ( Homf𝐶 ) ( 2nd𝑥 ) ) )
92 88 91 72 3eqtr4d ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ) ∧ ( 𝑓 ∈ ( ( 1st𝑦 ) ( Hom ‘ 𝐶 ) ( 1st𝑥 ) ) ∧ 𝑔 ∈ ( ( 2nd𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑦 ) ) ) ) → ( ( Homf𝐶 ) ‘ 𝑥 ) = ( ( Hom ‘ 𝐶 ) ‘ 𝑥 ) )
93 38 ad2antrr ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ) ∧ ( 𝑓 ∈ ( ( 1st𝑦 ) ( Hom ‘ 𝐶 ) ( 1st𝑥 ) ) ∧ 𝑔 ∈ ( ( 2nd𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑦 ) ) ) ) → ( Homf𝐶 ) : ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ⟶ 𝑈 )
94 93 54 ffvelrnd ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ) ∧ ( 𝑓 ∈ ( ( 1st𝑦 ) ( Hom ‘ 𝐶 ) ( 1st𝑥 ) ) ∧ 𝑔 ∈ ( ( 2nd𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑦 ) ) ) ) → ( ( Homf𝐶 ) ‘ 𝑥 ) ∈ 𝑈 )
95 92 94 eqeltrrd ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ) ∧ ( 𝑓 ∈ ( ( 1st𝑦 ) ( Hom ‘ 𝐶 ) ( 1st𝑥 ) ) ∧ 𝑔 ∈ ( ( 2nd𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑦 ) ) ) ) → ( ( Hom ‘ 𝐶 ) ‘ 𝑥 ) ∈ 𝑈 )
96 34 7 8 52 59 homfval ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ) ∧ ( 𝑓 ∈ ( ( 1st𝑦 ) ( Hom ‘ 𝐶 ) ( 1st𝑥 ) ) ∧ 𝑔 ∈ ( ( 2nd𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑦 ) ) ) ) → ( ( 1st𝑦 ) ( Homf𝐶 ) ( 2nd𝑦 ) ) = ( ( 1st𝑦 ) ( Hom ‘ 𝐶 ) ( 2nd𝑦 ) ) )
97 80 fveq2d ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ) ∧ ( 𝑓 ∈ ( ( 1st𝑦 ) ( Hom ‘ 𝐶 ) ( 1st𝑥 ) ) ∧ 𝑔 ∈ ( ( 2nd𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑦 ) ) ) ) → ( ( Homf𝐶 ) ‘ 𝑦 ) = ( ( Homf𝐶 ) ‘ ⟨ ( 1st𝑦 ) , ( 2nd𝑦 ) ⟩ ) )
98 df-ov ( ( 1st𝑦 ) ( Homf𝐶 ) ( 2nd𝑦 ) ) = ( ( Homf𝐶 ) ‘ ⟨ ( 1st𝑦 ) , ( 2nd𝑦 ) ⟩ )
99 97 98 eqtr4di ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ) ∧ ( 𝑓 ∈ ( ( 1st𝑦 ) ( Hom ‘ 𝐶 ) ( 1st𝑥 ) ) ∧ 𝑔 ∈ ( ( 2nd𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑦 ) ) ) ) → ( ( Homf𝐶 ) ‘ 𝑦 ) = ( ( 1st𝑦 ) ( Homf𝐶 ) ( 2nd𝑦 ) ) )
100 96 99 83 3eqtr4d ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ) ∧ ( 𝑓 ∈ ( ( 1st𝑦 ) ( Hom ‘ 𝐶 ) ( 1st𝑥 ) ) ∧ 𝑔 ∈ ( ( 2nd𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑦 ) ) ) ) → ( ( Homf𝐶 ) ‘ 𝑦 ) = ( ( Hom ‘ 𝐶 ) ‘ 𝑦 ) )
101 93 50 ffvelrnd ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ) ∧ ( 𝑓 ∈ ( ( 1st𝑦 ) ( Hom ‘ 𝐶 ) ( 1st𝑥 ) ) ∧ 𝑔 ∈ ( ( 2nd𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑦 ) ) ) ) → ( ( Homf𝐶 ) ‘ 𝑦 ) ∈ 𝑈 )
102 100 101 eqeltrrd ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ) ∧ ( 𝑓 ∈ ( ( 1st𝑦 ) ( Hom ‘ 𝐶 ) ( 1st𝑥 ) ) ∧ 𝑔 ∈ ( ( 2nd𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑦 ) ) ) ) → ( ( Hom ‘ 𝐶 ) ‘ 𝑦 ) ∈ 𝑈 )
103 3 87 24 95 102 elsetchom ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ) ∧ ( 𝑓 ∈ ( ( 1st𝑦 ) ( Hom ‘ 𝐶 ) ( 1st𝑥 ) ) ∧ 𝑔 ∈ ( ( 2nd𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑦 ) ) ) ) → ( ( ∈ ( ( Hom ‘ 𝐶 ) ‘ 𝑥 ) ↦ ( ( 𝑔 ( 𝑥 ( comp ‘ 𝐶 ) ( 2nd𝑦 ) ) ) ( ⟨ ( 1st𝑦 ) , ( 1st𝑥 ) ⟩ ( comp ‘ 𝐶 ) ( 2nd𝑦 ) ) 𝑓 ) ) ∈ ( ( ( Hom ‘ 𝐶 ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( Hom ‘ 𝐶 ) ‘ 𝑦 ) ) ↔ ( ∈ ( ( Hom ‘ 𝐶 ) ‘ 𝑥 ) ↦ ( ( 𝑔 ( 𝑥 ( comp ‘ 𝐶 ) ( 2nd𝑦 ) ) ) ( ⟨ ( 1st𝑦 ) , ( 1st𝑥 ) ⟩ ( comp ‘ 𝐶 ) ( 2nd𝑦 ) ) 𝑓 ) ) : ( ( Hom ‘ 𝐶 ) ‘ 𝑥 ) ⟶ ( ( Hom ‘ 𝐶 ) ‘ 𝑦 ) ) )
104 86 103 mpbird ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ) ∧ ( 𝑓 ∈ ( ( 1st𝑦 ) ( Hom ‘ 𝐶 ) ( 1st𝑥 ) ) ∧ 𝑔 ∈ ( ( 2nd𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑦 ) ) ) ) → ( ∈ ( ( Hom ‘ 𝐶 ) ‘ 𝑥 ) ↦ ( ( 𝑔 ( 𝑥 ( comp ‘ 𝐶 ) ( 2nd𝑦 ) ) ) ( ⟨ ( 1st𝑦 ) , ( 1st𝑥 ) ⟩ ( comp ‘ 𝐶 ) ( 2nd𝑦 ) ) 𝑓 ) ) ∈ ( ( ( Hom ‘ 𝐶 ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( Hom ‘ 𝐶 ) ‘ 𝑦 ) ) )
105 92 100 oveq12d ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ) ∧ ( 𝑓 ∈ ( ( 1st𝑦 ) ( Hom ‘ 𝐶 ) ( 1st𝑥 ) ) ∧ 𝑔 ∈ ( ( 2nd𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑦 ) ) ) ) → ( ( ( Homf𝐶 ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( Homf𝐶 ) ‘ 𝑦 ) ) = ( ( ( Hom ‘ 𝐶 ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( Hom ‘ 𝐶 ) ‘ 𝑦 ) ) )
106 104 105 eleqtrrd ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ) ∧ ( 𝑓 ∈ ( ( 1st𝑦 ) ( Hom ‘ 𝐶 ) ( 1st𝑥 ) ) ∧ 𝑔 ∈ ( ( 2nd𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑦 ) ) ) ) → ( ∈ ( ( Hom ‘ 𝐶 ) ‘ 𝑥 ) ↦ ( ( 𝑔 ( 𝑥 ( comp ‘ 𝐶 ) ( 2nd𝑦 ) ) ) ( ⟨ ( 1st𝑦 ) , ( 1st𝑥 ) ⟩ ( comp ‘ 𝐶 ) ( 2nd𝑦 ) ) 𝑓 ) ) ∈ ( ( ( Homf𝐶 ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( Homf𝐶 ) ‘ 𝑦 ) ) )
107 106 ralrimivva ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ) → ∀ 𝑓 ∈ ( ( 1st𝑦 ) ( Hom ‘ 𝐶 ) ( 1st𝑥 ) ) ∀ 𝑔 ∈ ( ( 2nd𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑦 ) ) ( ∈ ( ( Hom ‘ 𝐶 ) ‘ 𝑥 ) ↦ ( ( 𝑔 ( 𝑥 ( comp ‘ 𝐶 ) ( 2nd𝑦 ) ) ) ( ⟨ ( 1st𝑦 ) , ( 1st𝑥 ) ⟩ ( comp ‘ 𝐶 ) ( 2nd𝑦 ) ) 𝑓 ) ) ∈ ( ( ( Homf𝐶 ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( Homf𝐶 ) ‘ 𝑦 ) ) )
108 eqid ( 𝑓 ∈ ( ( 1st𝑦 ) ( Hom ‘ 𝐶 ) ( 1st𝑥 ) ) , 𝑔 ∈ ( ( 2nd𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑦 ) ) ↦ ( ∈ ( ( Hom ‘ 𝐶 ) ‘ 𝑥 ) ↦ ( ( 𝑔 ( 𝑥 ( comp ‘ 𝐶 ) ( 2nd𝑦 ) ) ) ( ⟨ ( 1st𝑦 ) , ( 1st𝑥 ) ⟩ ( comp ‘ 𝐶 ) ( 2nd𝑦 ) ) 𝑓 ) ) ) = ( 𝑓 ∈ ( ( 1st𝑦 ) ( Hom ‘ 𝐶 ) ( 1st𝑥 ) ) , 𝑔 ∈ ( ( 2nd𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑦 ) ) ↦ ( ∈ ( ( Hom ‘ 𝐶 ) ‘ 𝑥 ) ↦ ( ( 𝑔 ( 𝑥 ( comp ‘ 𝐶 ) ( 2nd𝑦 ) ) ) ( ⟨ ( 1st𝑦 ) , ( 1st𝑥 ) ⟩ ( comp ‘ 𝐶 ) ( 2nd𝑦 ) ) 𝑓 ) ) )
109 108 fmpo ( ∀ 𝑓 ∈ ( ( 1st𝑦 ) ( Hom ‘ 𝐶 ) ( 1st𝑥 ) ) ∀ 𝑔 ∈ ( ( 2nd𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑦 ) ) ( ∈ ( ( Hom ‘ 𝐶 ) ‘ 𝑥 ) ↦ ( ( 𝑔 ( 𝑥 ( comp ‘ 𝐶 ) ( 2nd𝑦 ) ) ) ( ⟨ ( 1st𝑦 ) , ( 1st𝑥 ) ⟩ ( comp ‘ 𝐶 ) ( 2nd𝑦 ) ) 𝑓 ) ) ∈ ( ( ( Homf𝐶 ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( Homf𝐶 ) ‘ 𝑦 ) ) ↔ ( 𝑓 ∈ ( ( 1st𝑦 ) ( Hom ‘ 𝐶 ) ( 1st𝑥 ) ) , 𝑔 ∈ ( ( 2nd𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑦 ) ) ↦ ( ∈ ( ( Hom ‘ 𝐶 ) ‘ 𝑥 ) ↦ ( ( 𝑔 ( 𝑥 ( comp ‘ 𝐶 ) ( 2nd𝑦 ) ) ) ( ⟨ ( 1st𝑦 ) , ( 1st𝑥 ) ⟩ ( comp ‘ 𝐶 ) ( 2nd𝑦 ) ) 𝑓 ) ) ) : ( ( ( 1st𝑦 ) ( Hom ‘ 𝐶 ) ( 1st𝑥 ) ) × ( ( 2nd𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑦 ) ) ) ⟶ ( ( ( Homf𝐶 ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( Homf𝐶 ) ‘ 𝑦 ) ) )
110 107 109 sylib ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ) → ( 𝑓 ∈ ( ( 1st𝑦 ) ( Hom ‘ 𝐶 ) ( 1st𝑥 ) ) , 𝑔 ∈ ( ( 2nd𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑦 ) ) ↦ ( ∈ ( ( Hom ‘ 𝐶 ) ‘ 𝑥 ) ↦ ( ( 𝑔 ( 𝑥 ( comp ‘ 𝐶 ) ( 2nd𝑦 ) ) ) ( ⟨ ( 1st𝑦 ) , ( 1st𝑥 ) ⟩ ( comp ‘ 𝐶 ) ( 2nd𝑦 ) ) 𝑓 ) ) ) : ( ( ( 1st𝑦 ) ( Hom ‘ 𝐶 ) ( 1st𝑥 ) ) × ( ( 2nd𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑦 ) ) ) ⟶ ( ( ( Homf𝐶 ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( Homf𝐶 ) ‘ 𝑦 ) ) )
111 16 oveqd ( 𝜑 → ( 𝑥 ( 2nd𝑀 ) 𝑦 ) = ( 𝑥 ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) , 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ↦ ( 𝑓 ∈ ( ( 1st𝑦 ) ( Hom ‘ 𝐶 ) ( 1st𝑥 ) ) , 𝑔 ∈ ( ( 2nd𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑦 ) ) ↦ ( ∈ ( ( Hom ‘ 𝐶 ) ‘ 𝑥 ) ↦ ( ( 𝑔 ( 𝑥 ( comp ‘ 𝐶 ) ( 2nd𝑦 ) ) ) ( ⟨ ( 1st𝑦 ) , ( 1st𝑥 ) ⟩ ( comp ‘ 𝐶 ) ( 2nd𝑦 ) ) 𝑓 ) ) ) ) 𝑦 ) )
112 42 ovmpt4g ( ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( ( 1st𝑦 ) ( Hom ‘ 𝐶 ) ( 1st𝑥 ) ) , 𝑔 ∈ ( ( 2nd𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑦 ) ) ↦ ( ∈ ( ( Hom ‘ 𝐶 ) ‘ 𝑥 ) ↦ ( ( 𝑔 ( 𝑥 ( comp ‘ 𝐶 ) ( 2nd𝑦 ) ) ) ( ⟨ ( 1st𝑦 ) , ( 1st𝑥 ) ⟩ ( comp ‘ 𝐶 ) ( 2nd𝑦 ) ) 𝑓 ) ) ) ∈ V ) → ( 𝑥 ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) , 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ↦ ( 𝑓 ∈ ( ( 1st𝑦 ) ( Hom ‘ 𝐶 ) ( 1st𝑥 ) ) , 𝑔 ∈ ( ( 2nd𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑦 ) ) ↦ ( ∈ ( ( Hom ‘ 𝐶 ) ‘ 𝑥 ) ↦ ( ( 𝑔 ( 𝑥 ( comp ‘ 𝐶 ) ( 2nd𝑦 ) ) ) ( ⟨ ( 1st𝑦 ) , ( 1st𝑥 ) ⟩ ( comp ‘ 𝐶 ) ( 2nd𝑦 ) ) 𝑓 ) ) ) ) 𝑦 ) = ( 𝑓 ∈ ( ( 1st𝑦 ) ( Hom ‘ 𝐶 ) ( 1st𝑥 ) ) , 𝑔 ∈ ( ( 2nd𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑦 ) ) ↦ ( ∈ ( ( Hom ‘ 𝐶 ) ‘ 𝑥 ) ↦ ( ( 𝑔 ( 𝑥 ( comp ‘ 𝐶 ) ( 2nd𝑦 ) ) ) ( ⟨ ( 1st𝑦 ) , ( 1st𝑥 ) ⟩ ( comp ‘ 𝐶 ) ( 2nd𝑦 ) ) 𝑓 ) ) ) )
113 45 112 mp3an3 ( ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) → ( 𝑥 ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) , 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ↦ ( 𝑓 ∈ ( ( 1st𝑦 ) ( Hom ‘ 𝐶 ) ( 1st𝑥 ) ) , 𝑔 ∈ ( ( 2nd𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑦 ) ) ↦ ( ∈ ( ( Hom ‘ 𝐶 ) ‘ 𝑥 ) ↦ ( ( 𝑔 ( 𝑥 ( comp ‘ 𝐶 ) ( 2nd𝑦 ) ) ) ( ⟨ ( 1st𝑦 ) , ( 1st𝑥 ) ⟩ ( comp ‘ 𝐶 ) ( 2nd𝑦 ) ) 𝑓 ) ) ) ) 𝑦 ) = ( 𝑓 ∈ ( ( 1st𝑦 ) ( Hom ‘ 𝐶 ) ( 1st𝑥 ) ) , 𝑔 ∈ ( ( 2nd𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑦 ) ) ↦ ( ∈ ( ( Hom ‘ 𝐶 ) ‘ 𝑥 ) ↦ ( ( 𝑔 ( 𝑥 ( comp ‘ 𝐶 ) ( 2nd𝑦 ) ) ) ( ⟨ ( 1st𝑦 ) , ( 1st𝑥 ) ⟩ ( comp ‘ 𝐶 ) ( 2nd𝑦 ) ) 𝑓 ) ) ) )
114 111 113 sylan9eq ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ) → ( 𝑥 ( 2nd𝑀 ) 𝑦 ) = ( 𝑓 ∈ ( ( 1st𝑦 ) ( Hom ‘ 𝐶 ) ( 1st𝑥 ) ) , 𝑔 ∈ ( ( 2nd𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑦 ) ) ↦ ( ∈ ( ( Hom ‘ 𝐶 ) ‘ 𝑥 ) ↦ ( ( 𝑔 ( 𝑥 ( comp ‘ 𝐶 ) ( 2nd𝑦 ) ) ) ( ⟨ ( 1st𝑦 ) , ( 1st𝑥 ) ⟩ ( comp ‘ 𝐶 ) ( 2nd𝑦 ) ) 𝑓 ) ) ) )
115 eqid ( Hom ‘ 𝑂 ) = ( Hom ‘ 𝑂 )
116 simprl ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ) → 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) )
117 simprr ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ) → 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) )
118 19 21 115 8 23 116 117 xpchom ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ) → ( 𝑥 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑦 ) = ( ( ( 1st𝑥 ) ( Hom ‘ 𝑂 ) ( 1st𝑦 ) ) × ( ( 2nd𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑦 ) ) ) )
119 8 2 oppchom ( ( 1st𝑥 ) ( Hom ‘ 𝑂 ) ( 1st𝑦 ) ) = ( ( 1st𝑦 ) ( Hom ‘ 𝐶 ) ( 1st𝑥 ) )
120 119 xpeq1i ( ( ( 1st𝑥 ) ( Hom ‘ 𝑂 ) ( 1st𝑦 ) ) × ( ( 2nd𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑦 ) ) ) = ( ( ( 1st𝑦 ) ( Hom ‘ 𝐶 ) ( 1st𝑥 ) ) × ( ( 2nd𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑦 ) ) )
121 118 120 eqtrdi ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ) → ( 𝑥 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑦 ) = ( ( ( 1st𝑦 ) ( Hom ‘ 𝐶 ) ( 1st𝑥 ) ) × ( ( 2nd𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑦 ) ) ) )
122 114 121 feq12d ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ) → ( ( 𝑥 ( 2nd𝑀 ) 𝑦 ) : ( 𝑥 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑦 ) ⟶ ( ( ( Homf𝐶 ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( Homf𝐶 ) ‘ 𝑦 ) ) ↔ ( 𝑓 ∈ ( ( 1st𝑦 ) ( Hom ‘ 𝐶 ) ( 1st𝑥 ) ) , 𝑔 ∈ ( ( 2nd𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑦 ) ) ↦ ( ∈ ( ( Hom ‘ 𝐶 ) ‘ 𝑥 ) ↦ ( ( 𝑔 ( 𝑥 ( comp ‘ 𝐶 ) ( 2nd𝑦 ) ) ) ( ⟨ ( 1st𝑦 ) , ( 1st𝑥 ) ⟩ ( comp ‘ 𝐶 ) ( 2nd𝑦 ) ) 𝑓 ) ) ) : ( ( ( 1st𝑦 ) ( Hom ‘ 𝐶 ) ( 1st𝑥 ) ) × ( ( 2nd𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑦 ) ) ) ⟶ ( ( ( Homf𝐶 ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( Homf𝐶 ) ‘ 𝑦 ) ) ) )
123 110 122 mpbird ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ) → ( 𝑥 ( 2nd𝑀 ) 𝑦 ) : ( 𝑥 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑦 ) ⟶ ( ( ( Homf𝐶 ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( Homf𝐶 ) ‘ 𝑦 ) ) )
124 eqid ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 )
125 4 ad2antrr ( ( ( 𝜑𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ∧ 𝑓 ∈ ( ( 1st𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑥 ) ) ) → 𝐶 ∈ Cat )
126 55 adantl ( ( 𝜑𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) → ( 1st𝑥 ) ∈ ( Base ‘ 𝐶 ) )
127 126 adantr ( ( ( 𝜑𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ∧ 𝑓 ∈ ( ( 1st𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑥 ) ) ) → ( 1st𝑥 ) ∈ ( Base ‘ 𝐶 ) )
128 67 adantl ( ( 𝜑𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) → ( 2nd𝑥 ) ∈ ( Base ‘ 𝐶 ) )
129 128 adantr ( ( ( 𝜑𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ∧ 𝑓 ∈ ( ( 1st𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑥 ) ) ) → ( 2nd𝑥 ) ∈ ( Base ‘ 𝐶 ) )
130 simpr ( ( ( 𝜑𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ∧ 𝑓 ∈ ( ( 1st𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑥 ) ) ) → 𝑓 ∈ ( ( 1st𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑥 ) ) )
131 7 8 124 125 127 9 129 130 catlid ( ( ( 𝜑𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ∧ 𝑓 ∈ ( ( 1st𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑥 ) ) ) → ( ( ( Id ‘ 𝐶 ) ‘ ( 2nd𝑥 ) ) ( ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ ( comp ‘ 𝐶 ) ( 2nd𝑥 ) ) 𝑓 ) = 𝑓 )
132 131 oveq1d ( ( ( 𝜑𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ∧ 𝑓 ∈ ( ( 1st𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑥 ) ) ) → ( ( ( ( Id ‘ 𝐶 ) ‘ ( 2nd𝑥 ) ) ( ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ ( comp ‘ 𝐶 ) ( 2nd𝑥 ) ) 𝑓 ) ( ⟨ ( 1st𝑥 ) , ( 1st𝑥 ) ⟩ ( comp ‘ 𝐶 ) ( 2nd𝑥 ) ) ( ( Id ‘ 𝐶 ) ‘ ( 1st𝑥 ) ) ) = ( 𝑓 ( ⟨ ( 1st𝑥 ) , ( 1st𝑥 ) ⟩ ( comp ‘ 𝐶 ) ( 2nd𝑥 ) ) ( ( Id ‘ 𝐶 ) ‘ ( 1st𝑥 ) ) ) )
133 7 8 124 125 127 9 129 130 catrid ( ( ( 𝜑𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ∧ 𝑓 ∈ ( ( 1st𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑥 ) ) ) → ( 𝑓 ( ⟨ ( 1st𝑥 ) , ( 1st𝑥 ) ⟩ ( comp ‘ 𝐶 ) ( 2nd𝑥 ) ) ( ( Id ‘ 𝐶 ) ‘ ( 1st𝑥 ) ) ) = 𝑓 )
134 132 133 eqtrd ( ( ( 𝜑𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ∧ 𝑓 ∈ ( ( 1st𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑥 ) ) ) → ( ( ( ( Id ‘ 𝐶 ) ‘ ( 2nd𝑥 ) ) ( ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ ( comp ‘ 𝐶 ) ( 2nd𝑥 ) ) 𝑓 ) ( ⟨ ( 1st𝑥 ) , ( 1st𝑥 ) ⟩ ( comp ‘ 𝐶 ) ( 2nd𝑥 ) ) ( ( Id ‘ 𝐶 ) ‘ ( 1st𝑥 ) ) ) = 𝑓 )
135 134 mpteq2dva ( ( 𝜑𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) → ( 𝑓 ∈ ( ( 1st𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑥 ) ) ↦ ( ( ( ( Id ‘ 𝐶 ) ‘ ( 2nd𝑥 ) ) ( ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ ( comp ‘ 𝐶 ) ( 2nd𝑥 ) ) 𝑓 ) ( ⟨ ( 1st𝑥 ) , ( 1st𝑥 ) ⟩ ( comp ‘ 𝐶 ) ( 2nd𝑥 ) ) ( ( Id ‘ 𝐶 ) ‘ ( 1st𝑥 ) ) ) ) = ( 𝑓 ∈ ( ( 1st𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑥 ) ) ↦ 𝑓 ) )
136 df-ov ( ( ( Id ‘ 𝐶 ) ‘ ( 1st𝑥 ) ) ( ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ ( 2nd𝑀 ) ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ ) ( ( Id ‘ 𝐶 ) ‘ ( 2nd𝑥 ) ) ) = ( ( ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ ( 2nd𝑀 ) ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ ) ‘ ⟨ ( ( Id ‘ 𝐶 ) ‘ ( 1st𝑥 ) ) , ( ( Id ‘ 𝐶 ) ‘ ( 2nd𝑥 ) ) ⟩ )
137 4 adantr ( ( 𝜑𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) → 𝐶 ∈ Cat )
138 7 8 124 137 126 catidcl ( ( 𝜑𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) → ( ( Id ‘ 𝐶 ) ‘ ( 1st𝑥 ) ) ∈ ( ( 1st𝑥 ) ( Hom ‘ 𝐶 ) ( 1st𝑥 ) ) )
139 7 8 124 137 128 catidcl ( ( 𝜑𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) → ( ( Id ‘ 𝐶 ) ‘ ( 2nd𝑥 ) ) ∈ ( ( 2nd𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑥 ) ) )
140 1 137 7 8 126 128 126 128 9 138 139 hof2val ( ( 𝜑𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) → ( ( ( Id ‘ 𝐶 ) ‘ ( 1st𝑥 ) ) ( ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ ( 2nd𝑀 ) ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ ) ( ( Id ‘ 𝐶 ) ‘ ( 2nd𝑥 ) ) ) = ( 𝑓 ∈ ( ( 1st𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑥 ) ) ↦ ( ( ( ( Id ‘ 𝐶 ) ‘ ( 2nd𝑥 ) ) ( ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ ( comp ‘ 𝐶 ) ( 2nd𝑥 ) ) 𝑓 ) ( ⟨ ( 1st𝑥 ) , ( 1st𝑥 ) ⟩ ( comp ‘ 𝐶 ) ( 2nd𝑥 ) ) ( ( Id ‘ 𝐶 ) ‘ ( 1st𝑥 ) ) ) ) )
141 136 140 eqtr3id ( ( 𝜑𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) → ( ( ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ ( 2nd𝑀 ) ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ ) ‘ ⟨ ( ( Id ‘ 𝐶 ) ‘ ( 1st𝑥 ) ) , ( ( Id ‘ 𝐶 ) ‘ ( 2nd𝑥 ) ) ⟩ ) = ( 𝑓 ∈ ( ( 1st𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑥 ) ) ↦ ( ( ( ( Id ‘ 𝐶 ) ‘ ( 2nd𝑥 ) ) ( ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ ( comp ‘ 𝐶 ) ( 2nd𝑥 ) ) 𝑓 ) ( ⟨ ( 1st𝑥 ) , ( 1st𝑥 ) ⟩ ( comp ‘ 𝐶 ) ( 2nd𝑥 ) ) ( ( Id ‘ 𝐶 ) ‘ ( 1st𝑥 ) ) ) ) )
142 62 adantl ( ( 𝜑𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) → 𝑥 = ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ )
143 142 fveq2d ( ( 𝜑𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) → ( ( Homf𝐶 ) ‘ 𝑥 ) = ( ( Homf𝐶 ) ‘ ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ ) )
144 143 90 eqtr4di ( ( 𝜑𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) → ( ( Homf𝐶 ) ‘ 𝑥 ) = ( ( 1st𝑥 ) ( Homf𝐶 ) ( 2nd𝑥 ) ) )
145 34 7 8 126 128 homfval ( ( 𝜑𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) → ( ( 1st𝑥 ) ( Homf𝐶 ) ( 2nd𝑥 ) ) = ( ( 1st𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑥 ) ) )
146 144 145 eqtrd ( ( 𝜑𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) → ( ( Homf𝐶 ) ‘ 𝑥 ) = ( ( 1st𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑥 ) ) )
147 146 reseq2d ( ( 𝜑𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) → ( I ↾ ( ( Homf𝐶 ) ‘ 𝑥 ) ) = ( I ↾ ( ( 1st𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑥 ) ) ) )
148 mptresid ( I ↾ ( ( 1st𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑥 ) ) ) = ( 𝑓 ∈ ( ( 1st𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑥 ) ) ↦ 𝑓 )
149 147 148 eqtrdi ( ( 𝜑𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) → ( I ↾ ( ( Homf𝐶 ) ‘ 𝑥 ) ) = ( 𝑓 ∈ ( ( 1st𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑥 ) ) ↦ 𝑓 ) )
150 135 141 149 3eqtr4d ( ( 𝜑𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) → ( ( ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ ( 2nd𝑀 ) ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ ) ‘ ⟨ ( ( Id ‘ 𝐶 ) ‘ ( 1st𝑥 ) ) , ( ( Id ‘ 𝐶 ) ‘ ( 2nd𝑥 ) ) ⟩ ) = ( I ↾ ( ( Homf𝐶 ) ‘ 𝑥 ) ) )
151 142 142 oveq12d ( ( 𝜑𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) → ( 𝑥 ( 2nd𝑀 ) 𝑥 ) = ( ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ ( 2nd𝑀 ) ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ ) )
152 142 fveq2d ( ( 𝜑𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) → ( ( Id ‘ ( 𝑂 ×c 𝐶 ) ) ‘ 𝑥 ) = ( ( Id ‘ ( 𝑂 ×c 𝐶 ) ) ‘ ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ ) )
153 30 adantr ( ( 𝜑𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) → 𝑂 ∈ Cat )
154 eqid ( Id ‘ 𝑂 ) = ( Id ‘ 𝑂 )
155 19 153 137 20 7 154 124 25 126 128 xpcid ( ( 𝜑𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) → ( ( Id ‘ ( 𝑂 ×c 𝐶 ) ) ‘ ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ ) = ⟨ ( ( Id ‘ 𝑂 ) ‘ ( 1st𝑥 ) ) , ( ( Id ‘ 𝐶 ) ‘ ( 2nd𝑥 ) ) ⟩ )
156 2 124 oppcid ( 𝐶 ∈ Cat → ( Id ‘ 𝑂 ) = ( Id ‘ 𝐶 ) )
157 137 156 syl ( ( 𝜑𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) → ( Id ‘ 𝑂 ) = ( Id ‘ 𝐶 ) )
158 157 fveq1d ( ( 𝜑𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) → ( ( Id ‘ 𝑂 ) ‘ ( 1st𝑥 ) ) = ( ( Id ‘ 𝐶 ) ‘ ( 1st𝑥 ) ) )
159 158 opeq1d ( ( 𝜑𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) → ⟨ ( ( Id ‘ 𝑂 ) ‘ ( 1st𝑥 ) ) , ( ( Id ‘ 𝐶 ) ‘ ( 2nd𝑥 ) ) ⟩ = ⟨ ( ( Id ‘ 𝐶 ) ‘ ( 1st𝑥 ) ) , ( ( Id ‘ 𝐶 ) ‘ ( 2nd𝑥 ) ) ⟩ )
160 152 155 159 3eqtrd ( ( 𝜑𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) → ( ( Id ‘ ( 𝑂 ×c 𝐶 ) ) ‘ 𝑥 ) = ⟨ ( ( Id ‘ 𝐶 ) ‘ ( 1st𝑥 ) ) , ( ( Id ‘ 𝐶 ) ‘ ( 2nd𝑥 ) ) ⟩ )
161 151 160 fveq12d ( ( 𝜑𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) → ( ( 𝑥 ( 2nd𝑀 ) 𝑥 ) ‘ ( ( Id ‘ ( 𝑂 ×c 𝐶 ) ) ‘ 𝑥 ) ) = ( ( ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ ( 2nd𝑀 ) ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ ) ‘ ⟨ ( ( Id ‘ 𝐶 ) ‘ ( 1st𝑥 ) ) , ( ( Id ‘ 𝐶 ) ‘ ( 2nd𝑥 ) ) ⟩ ) )
162 5 adantr ( ( 𝜑𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) → 𝑈𝑉 )
163 38 ffvelrnda ( ( 𝜑𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) → ( ( Homf𝐶 ) ‘ 𝑥 ) ∈ 𝑈 )
164 3 26 162 163 setcid ( ( 𝜑𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) → ( ( Id ‘ 𝐷 ) ‘ ( ( Homf𝐶 ) ‘ 𝑥 ) ) = ( I ↾ ( ( Homf𝐶 ) ‘ 𝑥 ) ) )
165 150 161 164 3eqtr4d ( ( 𝜑𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) → ( ( 𝑥 ( 2nd𝑀 ) 𝑥 ) ‘ ( ( Id ‘ ( 𝑂 ×c 𝐶 ) ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐷 ) ‘ ( ( Homf𝐶 ) ‘ 𝑥 ) ) )
166 4 3ad2ant1 ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑧 ) ) ) → 𝐶 ∈ Cat )
167 5 3ad2ant1 ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑧 ) ) ) → 𝑈𝑉 )
168 6 3ad2ant1 ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑧 ) ) ) → ran ( Homf𝐶 ) ⊆ 𝑈 )
169 simp21 ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑧 ) ) ) → 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) )
170 169 55 syl ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑧 ) ) ) → ( 1st𝑥 ) ∈ ( Base ‘ 𝐶 ) )
171 169 67 syl ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑧 ) ) ) → ( 2nd𝑥 ) ∈ ( Base ‘ 𝐶 ) )
172 simp22 ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑧 ) ) ) → 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) )
173 172 51 syl ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑧 ) ) ) → ( 1st𝑦 ) ∈ ( Base ‘ 𝐶 ) )
174 172 58 syl ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑧 ) ) ) → ( 2nd𝑦 ) ∈ ( Base ‘ 𝐶 ) )
175 simp23 ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑧 ) ) ) → 𝑧 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) )
176 xp1st ( 𝑧 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) → ( 1st𝑧 ) ∈ ( Base ‘ 𝐶 ) )
177 175 176 syl ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑧 ) ) ) → ( 1st𝑧 ) ∈ ( Base ‘ 𝐶 ) )
178 xp2nd ( 𝑧 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) → ( 2nd𝑧 ) ∈ ( Base ‘ 𝐶 ) )
179 175 178 syl ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑧 ) ) ) → ( 2nd𝑧 ) ∈ ( Base ‘ 𝐶 ) )
180 simp3l ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑧 ) ) ) → 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑦 ) )
181 19 21 115 8 23 169 172 xpchom ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑧 ) ) ) → ( 𝑥 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑦 ) = ( ( ( 1st𝑥 ) ( Hom ‘ 𝑂 ) ( 1st𝑦 ) ) × ( ( 2nd𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑦 ) ) ) )
182 180 181 eleqtrd ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑧 ) ) ) → 𝑓 ∈ ( ( ( 1st𝑥 ) ( Hom ‘ 𝑂 ) ( 1st𝑦 ) ) × ( ( 2nd𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑦 ) ) ) )
183 xp1st ( 𝑓 ∈ ( ( ( 1st𝑥 ) ( Hom ‘ 𝑂 ) ( 1st𝑦 ) ) × ( ( 2nd𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑦 ) ) ) → ( 1st𝑓 ) ∈ ( ( 1st𝑥 ) ( Hom ‘ 𝑂 ) ( 1st𝑦 ) ) )
184 182 183 syl ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑧 ) ) ) → ( 1st𝑓 ) ∈ ( ( 1st𝑥 ) ( Hom ‘ 𝑂 ) ( 1st𝑦 ) ) )
185 184 119 eleqtrdi ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑧 ) ) ) → ( 1st𝑓 ) ∈ ( ( 1st𝑦 ) ( Hom ‘ 𝐶 ) ( 1st𝑥 ) ) )
186 xp2nd ( 𝑓 ∈ ( ( ( 1st𝑥 ) ( Hom ‘ 𝑂 ) ( 1st𝑦 ) ) × ( ( 2nd𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑦 ) ) ) → ( 2nd𝑓 ) ∈ ( ( 2nd𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑦 ) ) )
187 182 186 syl ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑧 ) ) ) → ( 2nd𝑓 ) ∈ ( ( 2nd𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑦 ) ) )
188 simp3r ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑧 ) ) ) → 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑧 ) )
189 19 21 115 8 23 172 175 xpchom ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑧 ) ) ) → ( 𝑦 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑧 ) = ( ( ( 1st𝑦 ) ( Hom ‘ 𝑂 ) ( 1st𝑧 ) ) × ( ( 2nd𝑦 ) ( Hom ‘ 𝐶 ) ( 2nd𝑧 ) ) ) )
190 188 189 eleqtrd ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑧 ) ) ) → 𝑔 ∈ ( ( ( 1st𝑦 ) ( Hom ‘ 𝑂 ) ( 1st𝑧 ) ) × ( ( 2nd𝑦 ) ( Hom ‘ 𝐶 ) ( 2nd𝑧 ) ) ) )
191 xp1st ( 𝑔 ∈ ( ( ( 1st𝑦 ) ( Hom ‘ 𝑂 ) ( 1st𝑧 ) ) × ( ( 2nd𝑦 ) ( Hom ‘ 𝐶 ) ( 2nd𝑧 ) ) ) → ( 1st𝑔 ) ∈ ( ( 1st𝑦 ) ( Hom ‘ 𝑂 ) ( 1st𝑧 ) ) )
192 190 191 syl ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑧 ) ) ) → ( 1st𝑔 ) ∈ ( ( 1st𝑦 ) ( Hom ‘ 𝑂 ) ( 1st𝑧 ) ) )
193 8 2 oppchom ( ( 1st𝑦 ) ( Hom ‘ 𝑂 ) ( 1st𝑧 ) ) = ( ( 1st𝑧 ) ( Hom ‘ 𝐶 ) ( 1st𝑦 ) )
194 192 193 eleqtrdi ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑧 ) ) ) → ( 1st𝑔 ) ∈ ( ( 1st𝑧 ) ( Hom ‘ 𝐶 ) ( 1st𝑦 ) ) )
195 xp2nd ( 𝑔 ∈ ( ( ( 1st𝑦 ) ( Hom ‘ 𝑂 ) ( 1st𝑧 ) ) × ( ( 2nd𝑦 ) ( Hom ‘ 𝐶 ) ( 2nd𝑧 ) ) ) → ( 2nd𝑔 ) ∈ ( ( 2nd𝑦 ) ( Hom ‘ 𝐶 ) ( 2nd𝑧 ) ) )
196 190 195 syl ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑧 ) ) ) → ( 2nd𝑔 ) ∈ ( ( 2nd𝑦 ) ( Hom ‘ 𝐶 ) ( 2nd𝑧 ) ) )
197 1 2 3 166 167 168 7 8 170 171 173 174 177 179 185 187 194 196 hofcllem ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑧 ) ) ) → ( ( ( 1st𝑓 ) ( ⟨ ( 1st𝑧 ) , ( 1st𝑦 ) ⟩ ( comp ‘ 𝐶 ) ( 1st𝑥 ) ) ( 1st𝑔 ) ) ( ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ ( 2nd𝑀 ) ⟨ ( 1st𝑧 ) , ( 2nd𝑧 ) ⟩ ) ( ( 2nd𝑔 ) ( ⟨ ( 2nd𝑥 ) , ( 2nd𝑦 ) ⟩ ( comp ‘ 𝐶 ) ( 2nd𝑧 ) ) ( 2nd𝑓 ) ) ) = ( ( ( 1st𝑔 ) ( ⟨ ( 1st𝑦 ) , ( 2nd𝑦 ) ⟩ ( 2nd𝑀 ) ⟨ ( 1st𝑧 ) , ( 2nd𝑧 ) ⟩ ) ( 2nd𝑔 ) ) ( ⟨ ( ( 1st𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑥 ) ) , ( ( 1st𝑦 ) ( Hom ‘ 𝐶 ) ( 2nd𝑦 ) ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝑧 ) ( Hom ‘ 𝐶 ) ( 2nd𝑧 ) ) ) ( ( 1st𝑓 ) ( ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ ( 2nd𝑀 ) ⟨ ( 1st𝑦 ) , ( 2nd𝑦 ) ⟩ ) ( 2nd𝑓 ) ) ) )
198 169 62 syl ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑧 ) ) ) → 𝑥 = ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ )
199 1st2nd2 ( 𝑧 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) → 𝑧 = ⟨ ( 1st𝑧 ) , ( 2nd𝑧 ) ⟩ )
200 175 199 syl ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑧 ) ) ) → 𝑧 = ⟨ ( 1st𝑧 ) , ( 2nd𝑧 ) ⟩ )
201 198 200 oveq12d ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑧 ) ) ) → ( 𝑥 ( 2nd𝑀 ) 𝑧 ) = ( ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ ( 2nd𝑀 ) ⟨ ( 1st𝑧 ) , ( 2nd𝑧 ) ⟩ ) )
202 172 79 syl ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑧 ) ) ) → 𝑦 = ⟨ ( 1st𝑦 ) , ( 2nd𝑦 ) ⟩ )
203 198 202 opeq12d ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑧 ) ) ) → ⟨ 𝑥 , 𝑦 ⟩ = ⟨ ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ , ⟨ ( 1st𝑦 ) , ( 2nd𝑦 ) ⟩ ⟩ )
204 203 200 oveq12d ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑧 ) ) ) → ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ ( 𝑂 ×c 𝐶 ) ) 𝑧 ) = ( ⟨ ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ , ⟨ ( 1st𝑦 ) , ( 2nd𝑦 ) ⟩ ⟩ ( comp ‘ ( 𝑂 ×c 𝐶 ) ) ⟨ ( 1st𝑧 ) , ( 2nd𝑧 ) ⟩ ) )
205 1st2nd2 ( 𝑔 ∈ ( ( ( 1st𝑦 ) ( Hom ‘ 𝑂 ) ( 1st𝑧 ) ) × ( ( 2nd𝑦 ) ( Hom ‘ 𝐶 ) ( 2nd𝑧 ) ) ) → 𝑔 = ⟨ ( 1st𝑔 ) , ( 2nd𝑔 ) ⟩ )
206 190 205 syl ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑧 ) ) ) → 𝑔 = ⟨ ( 1st𝑔 ) , ( 2nd𝑔 ) ⟩ )
207 1st2nd2 ( 𝑓 ∈ ( ( ( 1st𝑥 ) ( Hom ‘ 𝑂 ) ( 1st𝑦 ) ) × ( ( 2nd𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑦 ) ) ) → 𝑓 = ⟨ ( 1st𝑓 ) , ( 2nd𝑓 ) ⟩ )
208 182 207 syl ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑧 ) ) ) → 𝑓 = ⟨ ( 1st𝑓 ) , ( 2nd𝑓 ) ⟩ )
209 204 206 208 oveq123d ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑧 ) ) ) → ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ ( 𝑂 ×c 𝐶 ) ) 𝑧 ) 𝑓 ) = ( ⟨ ( 1st𝑔 ) , ( 2nd𝑔 ) ⟩ ( ⟨ ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ , ⟨ ( 1st𝑦 ) , ( 2nd𝑦 ) ⟩ ⟩ ( comp ‘ ( 𝑂 ×c 𝐶 ) ) ⟨ ( 1st𝑧 ) , ( 2nd𝑧 ) ⟩ ) ⟨ ( 1st𝑓 ) , ( 2nd𝑓 ) ⟩ ) )
210 eqid ( comp ‘ 𝑂 ) = ( comp ‘ 𝑂 )
211 19 20 7 115 8 170 171 173 174 210 9 27 177 179 184 187 192 196 xpcco2 ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑧 ) ) ) → ( ⟨ ( 1st𝑔 ) , ( 2nd𝑔 ) ⟩ ( ⟨ ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ , ⟨ ( 1st𝑦 ) , ( 2nd𝑦 ) ⟩ ⟩ ( comp ‘ ( 𝑂 ×c 𝐶 ) ) ⟨ ( 1st𝑧 ) , ( 2nd𝑧 ) ⟩ ) ⟨ ( 1st𝑓 ) , ( 2nd𝑓 ) ⟩ ) = ⟨ ( ( 1st𝑔 ) ( ⟨ ( 1st𝑥 ) , ( 1st𝑦 ) ⟩ ( comp ‘ 𝑂 ) ( 1st𝑧 ) ) ( 1st𝑓 ) ) , ( ( 2nd𝑔 ) ( ⟨ ( 2nd𝑥 ) , ( 2nd𝑦 ) ⟩ ( comp ‘ 𝐶 ) ( 2nd𝑧 ) ) ( 2nd𝑓 ) ) ⟩ )
212 7 9 2 170 173 177 oppcco ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑧 ) ) ) → ( ( 1st𝑔 ) ( ⟨ ( 1st𝑥 ) , ( 1st𝑦 ) ⟩ ( comp ‘ 𝑂 ) ( 1st𝑧 ) ) ( 1st𝑓 ) ) = ( ( 1st𝑓 ) ( ⟨ ( 1st𝑧 ) , ( 1st𝑦 ) ⟩ ( comp ‘ 𝐶 ) ( 1st𝑥 ) ) ( 1st𝑔 ) ) )
213 212 opeq1d ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑧 ) ) ) → ⟨ ( ( 1st𝑔 ) ( ⟨ ( 1st𝑥 ) , ( 1st𝑦 ) ⟩ ( comp ‘ 𝑂 ) ( 1st𝑧 ) ) ( 1st𝑓 ) ) , ( ( 2nd𝑔 ) ( ⟨ ( 2nd𝑥 ) , ( 2nd𝑦 ) ⟩ ( comp ‘ 𝐶 ) ( 2nd𝑧 ) ) ( 2nd𝑓 ) ) ⟩ = ⟨ ( ( 1st𝑓 ) ( ⟨ ( 1st𝑧 ) , ( 1st𝑦 ) ⟩ ( comp ‘ 𝐶 ) ( 1st𝑥 ) ) ( 1st𝑔 ) ) , ( ( 2nd𝑔 ) ( ⟨ ( 2nd𝑥 ) , ( 2nd𝑦 ) ⟩ ( comp ‘ 𝐶 ) ( 2nd𝑧 ) ) ( 2nd𝑓 ) ) ⟩ )
214 209 211 213 3eqtrd ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑧 ) ) ) → ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ ( 𝑂 ×c 𝐶 ) ) 𝑧 ) 𝑓 ) = ⟨ ( ( 1st𝑓 ) ( ⟨ ( 1st𝑧 ) , ( 1st𝑦 ) ⟩ ( comp ‘ 𝐶 ) ( 1st𝑥 ) ) ( 1st𝑔 ) ) , ( ( 2nd𝑔 ) ( ⟨ ( 2nd𝑥 ) , ( 2nd𝑦 ) ⟩ ( comp ‘ 𝐶 ) ( 2nd𝑧 ) ) ( 2nd𝑓 ) ) ⟩ )
215 201 214 fveq12d ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑧 ) ) ) → ( ( 𝑥 ( 2nd𝑀 ) 𝑧 ) ‘ ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ ( 𝑂 ×c 𝐶 ) ) 𝑧 ) 𝑓 ) ) = ( ( ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ ( 2nd𝑀 ) ⟨ ( 1st𝑧 ) , ( 2nd𝑧 ) ⟩ ) ‘ ⟨ ( ( 1st𝑓 ) ( ⟨ ( 1st𝑧 ) , ( 1st𝑦 ) ⟩ ( comp ‘ 𝐶 ) ( 1st𝑥 ) ) ( 1st𝑔 ) ) , ( ( 2nd𝑔 ) ( ⟨ ( 2nd𝑥 ) , ( 2nd𝑦 ) ⟩ ( comp ‘ 𝐶 ) ( 2nd𝑧 ) ) ( 2nd𝑓 ) ) ⟩ ) )
216 df-ov ( ( ( 1st𝑓 ) ( ⟨ ( 1st𝑧 ) , ( 1st𝑦 ) ⟩ ( comp ‘ 𝐶 ) ( 1st𝑥 ) ) ( 1st𝑔 ) ) ( ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ ( 2nd𝑀 ) ⟨ ( 1st𝑧 ) , ( 2nd𝑧 ) ⟩ ) ( ( 2nd𝑔 ) ( ⟨ ( 2nd𝑥 ) , ( 2nd𝑦 ) ⟩ ( comp ‘ 𝐶 ) ( 2nd𝑧 ) ) ( 2nd𝑓 ) ) ) = ( ( ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ ( 2nd𝑀 ) ⟨ ( 1st𝑧 ) , ( 2nd𝑧 ) ⟩ ) ‘ ⟨ ( ( 1st𝑓 ) ( ⟨ ( 1st𝑧 ) , ( 1st𝑦 ) ⟩ ( comp ‘ 𝐶 ) ( 1st𝑥 ) ) ( 1st𝑔 ) ) , ( ( 2nd𝑔 ) ( ⟨ ( 2nd𝑥 ) , ( 2nd𝑦 ) ⟩ ( comp ‘ 𝐶 ) ( 2nd𝑧 ) ) ( 2nd𝑓 ) ) ⟩ )
217 215 216 eqtr4di ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑧 ) ) ) → ( ( 𝑥 ( 2nd𝑀 ) 𝑧 ) ‘ ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ ( 𝑂 ×c 𝐶 ) ) 𝑧 ) 𝑓 ) ) = ( ( ( 1st𝑓 ) ( ⟨ ( 1st𝑧 ) , ( 1st𝑦 ) ⟩ ( comp ‘ 𝐶 ) ( 1st𝑥 ) ) ( 1st𝑔 ) ) ( ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ ( 2nd𝑀 ) ⟨ ( 1st𝑧 ) , ( 2nd𝑧 ) ⟩ ) ( ( 2nd𝑔 ) ( ⟨ ( 2nd𝑥 ) , ( 2nd𝑦 ) ⟩ ( comp ‘ 𝐶 ) ( 2nd𝑧 ) ) ( 2nd𝑓 ) ) ) )
218 198 fveq2d ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑧 ) ) ) → ( ( Homf𝐶 ) ‘ 𝑥 ) = ( ( Homf𝐶 ) ‘ ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ ) )
219 218 90 eqtr4di ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑧 ) ) ) → ( ( Homf𝐶 ) ‘ 𝑥 ) = ( ( 1st𝑥 ) ( Homf𝐶 ) ( 2nd𝑥 ) ) )
220 34 7 8 170 171 homfval ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑧 ) ) ) → ( ( 1st𝑥 ) ( Homf𝐶 ) ( 2nd𝑥 ) ) = ( ( 1st𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑥 ) ) )
221 219 220 eqtrd ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑧 ) ) ) → ( ( Homf𝐶 ) ‘ 𝑥 ) = ( ( 1st𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑥 ) ) )
222 202 fveq2d ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑧 ) ) ) → ( ( Homf𝐶 ) ‘ 𝑦 ) = ( ( Homf𝐶 ) ‘ ⟨ ( 1st𝑦 ) , ( 2nd𝑦 ) ⟩ ) )
223 222 98 eqtr4di ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑧 ) ) ) → ( ( Homf𝐶 ) ‘ 𝑦 ) = ( ( 1st𝑦 ) ( Homf𝐶 ) ( 2nd𝑦 ) ) )
224 34 7 8 173 174 homfval ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑧 ) ) ) → ( ( 1st𝑦 ) ( Homf𝐶 ) ( 2nd𝑦 ) ) = ( ( 1st𝑦 ) ( Hom ‘ 𝐶 ) ( 2nd𝑦 ) ) )
225 223 224 eqtrd ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑧 ) ) ) → ( ( Homf𝐶 ) ‘ 𝑦 ) = ( ( 1st𝑦 ) ( Hom ‘ 𝐶 ) ( 2nd𝑦 ) ) )
226 221 225 opeq12d ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑧 ) ) ) → ⟨ ( ( Homf𝐶 ) ‘ 𝑥 ) , ( ( Homf𝐶 ) ‘ 𝑦 ) ⟩ = ⟨ ( ( 1st𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑥 ) ) , ( ( 1st𝑦 ) ( Hom ‘ 𝐶 ) ( 2nd𝑦 ) ) ⟩ )
227 200 fveq2d ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑧 ) ) ) → ( ( Homf𝐶 ) ‘ 𝑧 ) = ( ( Homf𝐶 ) ‘ ⟨ ( 1st𝑧 ) , ( 2nd𝑧 ) ⟩ ) )
228 df-ov ( ( 1st𝑧 ) ( Homf𝐶 ) ( 2nd𝑧 ) ) = ( ( Homf𝐶 ) ‘ ⟨ ( 1st𝑧 ) , ( 2nd𝑧 ) ⟩ )
229 227 228 eqtr4di ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑧 ) ) ) → ( ( Homf𝐶 ) ‘ 𝑧 ) = ( ( 1st𝑧 ) ( Homf𝐶 ) ( 2nd𝑧 ) ) )
230 34 7 8 177 179 homfval ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑧 ) ) ) → ( ( 1st𝑧 ) ( Homf𝐶 ) ( 2nd𝑧 ) ) = ( ( 1st𝑧 ) ( Hom ‘ 𝐶 ) ( 2nd𝑧 ) ) )
231 229 230 eqtrd ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑧 ) ) ) → ( ( Homf𝐶 ) ‘ 𝑧 ) = ( ( 1st𝑧 ) ( Hom ‘ 𝐶 ) ( 2nd𝑧 ) ) )
232 226 231 oveq12d ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑧 ) ) ) → ( ⟨ ( ( Homf𝐶 ) ‘ 𝑥 ) , ( ( Homf𝐶 ) ‘ 𝑦 ) ⟩ ( comp ‘ 𝐷 ) ( ( Homf𝐶 ) ‘ 𝑧 ) ) = ( ⟨ ( ( 1st𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑥 ) ) , ( ( 1st𝑦 ) ( Hom ‘ 𝐶 ) ( 2nd𝑦 ) ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝑧 ) ( Hom ‘ 𝐶 ) ( 2nd𝑧 ) ) ) )
233 202 200 oveq12d ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑧 ) ) ) → ( 𝑦 ( 2nd𝑀 ) 𝑧 ) = ( ⟨ ( 1st𝑦 ) , ( 2nd𝑦 ) ⟩ ( 2nd𝑀 ) ⟨ ( 1st𝑧 ) , ( 2nd𝑧 ) ⟩ ) )
234 233 206 fveq12d ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑧 ) ) ) → ( ( 𝑦 ( 2nd𝑀 ) 𝑧 ) ‘ 𝑔 ) = ( ( ⟨ ( 1st𝑦 ) , ( 2nd𝑦 ) ⟩ ( 2nd𝑀 ) ⟨ ( 1st𝑧 ) , ( 2nd𝑧 ) ⟩ ) ‘ ⟨ ( 1st𝑔 ) , ( 2nd𝑔 ) ⟩ ) )
235 df-ov ( ( 1st𝑔 ) ( ⟨ ( 1st𝑦 ) , ( 2nd𝑦 ) ⟩ ( 2nd𝑀 ) ⟨ ( 1st𝑧 ) , ( 2nd𝑧 ) ⟩ ) ( 2nd𝑔 ) ) = ( ( ⟨ ( 1st𝑦 ) , ( 2nd𝑦 ) ⟩ ( 2nd𝑀 ) ⟨ ( 1st𝑧 ) , ( 2nd𝑧 ) ⟩ ) ‘ ⟨ ( 1st𝑔 ) , ( 2nd𝑔 ) ⟩ )
236 234 235 eqtr4di ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑧 ) ) ) → ( ( 𝑦 ( 2nd𝑀 ) 𝑧 ) ‘ 𝑔 ) = ( ( 1st𝑔 ) ( ⟨ ( 1st𝑦 ) , ( 2nd𝑦 ) ⟩ ( 2nd𝑀 ) ⟨ ( 1st𝑧 ) , ( 2nd𝑧 ) ⟩ ) ( 2nd𝑔 ) ) )
237 198 202 oveq12d ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑧 ) ) ) → ( 𝑥 ( 2nd𝑀 ) 𝑦 ) = ( ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ ( 2nd𝑀 ) ⟨ ( 1st𝑦 ) , ( 2nd𝑦 ) ⟩ ) )
238 237 208 fveq12d ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑧 ) ) ) → ( ( 𝑥 ( 2nd𝑀 ) 𝑦 ) ‘ 𝑓 ) = ( ( ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ ( 2nd𝑀 ) ⟨ ( 1st𝑦 ) , ( 2nd𝑦 ) ⟩ ) ‘ ⟨ ( 1st𝑓 ) , ( 2nd𝑓 ) ⟩ ) )
239 df-ov ( ( 1st𝑓 ) ( ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ ( 2nd𝑀 ) ⟨ ( 1st𝑦 ) , ( 2nd𝑦 ) ⟩ ) ( 2nd𝑓 ) ) = ( ( ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ ( 2nd𝑀 ) ⟨ ( 1st𝑦 ) , ( 2nd𝑦 ) ⟩ ) ‘ ⟨ ( 1st𝑓 ) , ( 2nd𝑓 ) ⟩ )
240 238 239 eqtr4di ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑧 ) ) ) → ( ( 𝑥 ( 2nd𝑀 ) 𝑦 ) ‘ 𝑓 ) = ( ( 1st𝑓 ) ( ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ ( 2nd𝑀 ) ⟨ ( 1st𝑦 ) , ( 2nd𝑦 ) ⟩ ) ( 2nd𝑓 ) ) )
241 232 236 240 oveq123d ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑧 ) ) ) → ( ( ( 𝑦 ( 2nd𝑀 ) 𝑧 ) ‘ 𝑔 ) ( ⟨ ( ( Homf𝐶 ) ‘ 𝑥 ) , ( ( Homf𝐶 ) ‘ 𝑦 ) ⟩ ( comp ‘ 𝐷 ) ( ( Homf𝐶 ) ‘ 𝑧 ) ) ( ( 𝑥 ( 2nd𝑀 ) 𝑦 ) ‘ 𝑓 ) ) = ( ( ( 1st𝑔 ) ( ⟨ ( 1st𝑦 ) , ( 2nd𝑦 ) ⟩ ( 2nd𝑀 ) ⟨ ( 1st𝑧 ) , ( 2nd𝑧 ) ⟩ ) ( 2nd𝑔 ) ) ( ⟨ ( ( 1st𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑥 ) ) , ( ( 1st𝑦 ) ( Hom ‘ 𝐶 ) ( 2nd𝑦 ) ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝑧 ) ( Hom ‘ 𝐶 ) ( 2nd𝑧 ) ) ) ( ( 1st𝑓 ) ( ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ ( 2nd𝑀 ) ⟨ ( 1st𝑦 ) , ( 2nd𝑦 ) ⟩ ) ( 2nd𝑓 ) ) ) )
242 197 217 241 3eqtr4d ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝑂 ×c 𝐶 ) ) 𝑧 ) ) ) → ( ( 𝑥 ( 2nd𝑀 ) 𝑧 ) ‘ ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ ( 𝑂 ×c 𝐶 ) ) 𝑧 ) 𝑓 ) ) = ( ( ( 𝑦 ( 2nd𝑀 ) 𝑧 ) ‘ 𝑔 ) ( ⟨ ( ( Homf𝐶 ) ‘ 𝑥 ) , ( ( Homf𝐶 ) ‘ 𝑦 ) ⟩ ( comp ‘ 𝐷 ) ( ( Homf𝐶 ) ‘ 𝑧 ) ) ( ( 𝑥 ( 2nd𝑀 ) 𝑦 ) ‘ 𝑓 ) ) )
243 21 22 23 24 25 26 27 28 31 33 41 48 123 165 242 isfuncd ( 𝜑 → ( Homf𝐶 ) ( ( 𝑂 ×c 𝐶 ) Func 𝐷 ) ( 2nd𝑀 ) )
244 df-br ( ( Homf𝐶 ) ( ( 𝑂 ×c 𝐶 ) Func 𝐷 ) ( 2nd𝑀 ) ↔ ⟨ ( Homf𝐶 ) , ( 2nd𝑀 ) ⟩ ∈ ( ( 𝑂 ×c 𝐶 ) Func 𝐷 ) )
245 243 244 sylib ( 𝜑 → ⟨ ( Homf𝐶 ) , ( 2nd𝑀 ) ⟩ ∈ ( ( 𝑂 ×c 𝐶 ) Func 𝐷 ) )
246 18 245 eqeltrd ( 𝜑𝑀 ∈ ( ( 𝑂 ×c 𝐶 ) Func 𝐷 ) )