Metamath Proof Explorer


Theorem setcbas

Description: Set of objects of the category of sets (in a universe). (Contributed by Mario Carneiro, 3-Jan-2017)

Ref Expression
Hypotheses setcbas.c 𝐶 = ( SetCat ‘ 𝑈 )
setcbas.u ( 𝜑𝑈𝑉 )
Assertion setcbas ( 𝜑𝑈 = ( Base ‘ 𝐶 ) )

Proof

Step Hyp Ref Expression
1 setcbas.c 𝐶 = ( SetCat ‘ 𝑈 )
2 setcbas.u ( 𝜑𝑈𝑉 )
3 catstr { ⟨ ( Base ‘ ndx ) , 𝑈 ⟩ , ⟨ ( Hom ‘ ndx ) , ( 𝑥𝑈 , 𝑦𝑈 ↦ ( 𝑦m 𝑥 ) ) ⟩ , ⟨ ( comp ‘ ndx ) , ( 𝑣 ∈ ( 𝑈 × 𝑈 ) , 𝑧𝑈 ↦ ( 𝑔 ∈ ( 𝑧m ( 2nd𝑣 ) ) , 𝑓 ∈ ( ( 2nd𝑣 ) ↑m ( 1st𝑣 ) ) ↦ ( 𝑔𝑓 ) ) ) ⟩ } Struct ⟨ 1 , 1 5 ⟩
4 baseid Base = Slot ( Base ‘ ndx )
5 snsstp1 { ⟨ ( Base ‘ ndx ) , 𝑈 ⟩ } ⊆ { ⟨ ( Base ‘ ndx ) , 𝑈 ⟩ , ⟨ ( Hom ‘ ndx ) , ( 𝑥𝑈 , 𝑦𝑈 ↦ ( 𝑦m 𝑥 ) ) ⟩ , ⟨ ( comp ‘ ndx ) , ( 𝑣 ∈ ( 𝑈 × 𝑈 ) , 𝑧𝑈 ↦ ( 𝑔 ∈ ( 𝑧m ( 2nd𝑣 ) ) , 𝑓 ∈ ( ( 2nd𝑣 ) ↑m ( 1st𝑣 ) ) ↦ ( 𝑔𝑓 ) ) ) ⟩ }
6 3 4 5 strfv ( 𝑈𝑉𝑈 = ( Base ‘ { ⟨ ( Base ‘ ndx ) , 𝑈 ⟩ , ⟨ ( Hom ‘ ndx ) , ( 𝑥𝑈 , 𝑦𝑈 ↦ ( 𝑦m 𝑥 ) ) ⟩ , ⟨ ( comp ‘ ndx ) , ( 𝑣 ∈ ( 𝑈 × 𝑈 ) , 𝑧𝑈 ↦ ( 𝑔 ∈ ( 𝑧m ( 2nd𝑣 ) ) , 𝑓 ∈ ( ( 2nd𝑣 ) ↑m ( 1st𝑣 ) ) ↦ ( 𝑔𝑓 ) ) ) ⟩ } ) )
7 2 6 syl ( 𝜑𝑈 = ( Base ‘ { ⟨ ( Base ‘ ndx ) , 𝑈 ⟩ , ⟨ ( Hom ‘ ndx ) , ( 𝑥𝑈 , 𝑦𝑈 ↦ ( 𝑦m 𝑥 ) ) ⟩ , ⟨ ( comp ‘ ndx ) , ( 𝑣 ∈ ( 𝑈 × 𝑈 ) , 𝑧𝑈 ↦ ( 𝑔 ∈ ( 𝑧m ( 2nd𝑣 ) ) , 𝑓 ∈ ( ( 2nd𝑣 ) ↑m ( 1st𝑣 ) ) ↦ ( 𝑔𝑓 ) ) ) ⟩ } ) )
8 eqidd ( 𝜑 → ( 𝑥𝑈 , 𝑦𝑈 ↦ ( 𝑦m 𝑥 ) ) = ( 𝑥𝑈 , 𝑦𝑈 ↦ ( 𝑦m 𝑥 ) ) )
9 eqidd ( 𝜑 → ( 𝑣 ∈ ( 𝑈 × 𝑈 ) , 𝑧𝑈 ↦ ( 𝑔 ∈ ( 𝑧m ( 2nd𝑣 ) ) , 𝑓 ∈ ( ( 2nd𝑣 ) ↑m ( 1st𝑣 ) ) ↦ ( 𝑔𝑓 ) ) ) = ( 𝑣 ∈ ( 𝑈 × 𝑈 ) , 𝑧𝑈 ↦ ( 𝑔 ∈ ( 𝑧m ( 2nd𝑣 ) ) , 𝑓 ∈ ( ( 2nd𝑣 ) ↑m ( 1st𝑣 ) ) ↦ ( 𝑔𝑓 ) ) ) )
10 1 2 8 9 setcval ( 𝜑𝐶 = { ⟨ ( Base ‘ ndx ) , 𝑈 ⟩ , ⟨ ( Hom ‘ ndx ) , ( 𝑥𝑈 , 𝑦𝑈 ↦ ( 𝑦m 𝑥 ) ) ⟩ , ⟨ ( comp ‘ ndx ) , ( 𝑣 ∈ ( 𝑈 × 𝑈 ) , 𝑧𝑈 ↦ ( 𝑔 ∈ ( 𝑧m ( 2nd𝑣 ) ) , 𝑓 ∈ ( ( 2nd𝑣 ) ↑m ( 1st𝑣 ) ) ↦ ( 𝑔𝑓 ) ) ) ⟩ } )
11 10 fveq2d ( 𝜑 → ( Base ‘ 𝐶 ) = ( Base ‘ { ⟨ ( Base ‘ ndx ) , 𝑈 ⟩ , ⟨ ( Hom ‘ ndx ) , ( 𝑥𝑈 , 𝑦𝑈 ↦ ( 𝑦m 𝑥 ) ) ⟩ , ⟨ ( comp ‘ ndx ) , ( 𝑣 ∈ ( 𝑈 × 𝑈 ) , 𝑧𝑈 ↦ ( 𝑔 ∈ ( 𝑧m ( 2nd𝑣 ) ) , 𝑓 ∈ ( ( 2nd𝑣 ) ↑m ( 1st𝑣 ) ) ↦ ( 𝑔𝑓 ) ) ) ⟩ } ) )
12 7 11 eqtr4d ( 𝜑𝑈 = ( Base ‘ 𝐶 ) )