| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							setcval.c | 
							⊢ 𝐶  =  ( SetCat ‘ 𝑈 )  | 
						
						
							| 2 | 
							
								
							 | 
							setcval.u | 
							⊢ ( 𝜑  →  𝑈  ∈  𝑉 )  | 
						
						
							| 3 | 
							
								
							 | 
							setcval.h | 
							⊢ ( 𝜑  →  𝐻  =  ( 𝑥  ∈  𝑈 ,  𝑦  ∈  𝑈  ↦  ( 𝑦  ↑m  𝑥 ) ) )  | 
						
						
							| 4 | 
							
								
							 | 
							setcval.o | 
							⊢ ( 𝜑  →   ·   =  ( 𝑣  ∈  ( 𝑈  ×  𝑈 ) ,  𝑧  ∈  𝑈  ↦  ( 𝑔  ∈  ( 𝑧  ↑m  ( 2nd  ‘ 𝑣 ) ) ,  𝑓  ∈  ( ( 2nd  ‘ 𝑣 )  ↑m  ( 1st  ‘ 𝑣 ) )  ↦  ( 𝑔  ∘  𝑓 ) ) ) )  | 
						
						
							| 5 | 
							
								
							 | 
							df-setc | 
							⊢ SetCat  =  ( 𝑢  ∈  V  ↦  { 〈 ( Base ‘ ndx ) ,  𝑢 〉 ,  〈 ( Hom  ‘ ndx ) ,  ( 𝑥  ∈  𝑢 ,  𝑦  ∈  𝑢  ↦  ( 𝑦  ↑m  𝑥 ) ) 〉 ,  〈 ( comp ‘ ndx ) ,  ( 𝑣  ∈  ( 𝑢  ×  𝑢 ) ,  𝑧  ∈  𝑢  ↦  ( 𝑔  ∈  ( 𝑧  ↑m  ( 2nd  ‘ 𝑣 ) ) ,  𝑓  ∈  ( ( 2nd  ‘ 𝑣 )  ↑m  ( 1st  ‘ 𝑣 ) )  ↦  ( 𝑔  ∘  𝑓 ) ) ) 〉 } )  | 
						
						
							| 6 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝜑  ∧  𝑢  =  𝑈 )  →  𝑢  =  𝑈 )  | 
						
						
							| 7 | 
							
								6
							 | 
							opeq2d | 
							⊢ ( ( 𝜑  ∧  𝑢  =  𝑈 )  →  〈 ( Base ‘ ndx ) ,  𝑢 〉  =  〈 ( Base ‘ ndx ) ,  𝑈 〉 )  | 
						
						
							| 8 | 
							
								
							 | 
							eqidd | 
							⊢ ( ( 𝜑  ∧  𝑢  =  𝑈 )  →  ( 𝑦  ↑m  𝑥 )  =  ( 𝑦  ↑m  𝑥 ) )  | 
						
						
							| 9 | 
							
								6 6 8
							 | 
							mpoeq123dv | 
							⊢ ( ( 𝜑  ∧  𝑢  =  𝑈 )  →  ( 𝑥  ∈  𝑢 ,  𝑦  ∈  𝑢  ↦  ( 𝑦  ↑m  𝑥 ) )  =  ( 𝑥  ∈  𝑈 ,  𝑦  ∈  𝑈  ↦  ( 𝑦  ↑m  𝑥 ) ) )  | 
						
						
							| 10 | 
							
								3
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑢  =  𝑈 )  →  𝐻  =  ( 𝑥  ∈  𝑈 ,  𝑦  ∈  𝑈  ↦  ( 𝑦  ↑m  𝑥 ) ) )  | 
						
						
							| 11 | 
							
								9 10
							 | 
							eqtr4d | 
							⊢ ( ( 𝜑  ∧  𝑢  =  𝑈 )  →  ( 𝑥  ∈  𝑢 ,  𝑦  ∈  𝑢  ↦  ( 𝑦  ↑m  𝑥 ) )  =  𝐻 )  | 
						
						
							| 12 | 
							
								11
							 | 
							opeq2d | 
							⊢ ( ( 𝜑  ∧  𝑢  =  𝑈 )  →  〈 ( Hom  ‘ ndx ) ,  ( 𝑥  ∈  𝑢 ,  𝑦  ∈  𝑢  ↦  ( 𝑦  ↑m  𝑥 ) ) 〉  =  〈 ( Hom  ‘ ndx ) ,  𝐻 〉 )  | 
						
						
							| 13 | 
							
								6
							 | 
							sqxpeqd | 
							⊢ ( ( 𝜑  ∧  𝑢  =  𝑈 )  →  ( 𝑢  ×  𝑢 )  =  ( 𝑈  ×  𝑈 ) )  | 
						
						
							| 14 | 
							
								
							 | 
							eqidd | 
							⊢ ( ( 𝜑  ∧  𝑢  =  𝑈 )  →  ( 𝑔  ∈  ( 𝑧  ↑m  ( 2nd  ‘ 𝑣 ) ) ,  𝑓  ∈  ( ( 2nd  ‘ 𝑣 )  ↑m  ( 1st  ‘ 𝑣 ) )  ↦  ( 𝑔  ∘  𝑓 ) )  =  ( 𝑔  ∈  ( 𝑧  ↑m  ( 2nd  ‘ 𝑣 ) ) ,  𝑓  ∈  ( ( 2nd  ‘ 𝑣 )  ↑m  ( 1st  ‘ 𝑣 ) )  ↦  ( 𝑔  ∘  𝑓 ) ) )  | 
						
						
							| 15 | 
							
								13 6 14
							 | 
							mpoeq123dv | 
							⊢ ( ( 𝜑  ∧  𝑢  =  𝑈 )  →  ( 𝑣  ∈  ( 𝑢  ×  𝑢 ) ,  𝑧  ∈  𝑢  ↦  ( 𝑔  ∈  ( 𝑧  ↑m  ( 2nd  ‘ 𝑣 ) ) ,  𝑓  ∈  ( ( 2nd  ‘ 𝑣 )  ↑m  ( 1st  ‘ 𝑣 ) )  ↦  ( 𝑔  ∘  𝑓 ) ) )  =  ( 𝑣  ∈  ( 𝑈  ×  𝑈 ) ,  𝑧  ∈  𝑈  ↦  ( 𝑔  ∈  ( 𝑧  ↑m  ( 2nd  ‘ 𝑣 ) ) ,  𝑓  ∈  ( ( 2nd  ‘ 𝑣 )  ↑m  ( 1st  ‘ 𝑣 ) )  ↦  ( 𝑔  ∘  𝑓 ) ) ) )  | 
						
						
							| 16 | 
							
								4
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑢  =  𝑈 )  →   ·   =  ( 𝑣  ∈  ( 𝑈  ×  𝑈 ) ,  𝑧  ∈  𝑈  ↦  ( 𝑔  ∈  ( 𝑧  ↑m  ( 2nd  ‘ 𝑣 ) ) ,  𝑓  ∈  ( ( 2nd  ‘ 𝑣 )  ↑m  ( 1st  ‘ 𝑣 ) )  ↦  ( 𝑔  ∘  𝑓 ) ) ) )  | 
						
						
							| 17 | 
							
								15 16
							 | 
							eqtr4d | 
							⊢ ( ( 𝜑  ∧  𝑢  =  𝑈 )  →  ( 𝑣  ∈  ( 𝑢  ×  𝑢 ) ,  𝑧  ∈  𝑢  ↦  ( 𝑔  ∈  ( 𝑧  ↑m  ( 2nd  ‘ 𝑣 ) ) ,  𝑓  ∈  ( ( 2nd  ‘ 𝑣 )  ↑m  ( 1st  ‘ 𝑣 ) )  ↦  ( 𝑔  ∘  𝑓 ) ) )  =   ·  )  | 
						
						
							| 18 | 
							
								17
							 | 
							opeq2d | 
							⊢ ( ( 𝜑  ∧  𝑢  =  𝑈 )  →  〈 ( comp ‘ ndx ) ,  ( 𝑣  ∈  ( 𝑢  ×  𝑢 ) ,  𝑧  ∈  𝑢  ↦  ( 𝑔  ∈  ( 𝑧  ↑m  ( 2nd  ‘ 𝑣 ) ) ,  𝑓  ∈  ( ( 2nd  ‘ 𝑣 )  ↑m  ( 1st  ‘ 𝑣 ) )  ↦  ( 𝑔  ∘  𝑓 ) ) ) 〉  =  〈 ( comp ‘ ndx ) ,   ·  〉 )  | 
						
						
							| 19 | 
							
								7 12 18
							 | 
							tpeq123d | 
							⊢ ( ( 𝜑  ∧  𝑢  =  𝑈 )  →  { 〈 ( Base ‘ ndx ) ,  𝑢 〉 ,  〈 ( Hom  ‘ ndx ) ,  ( 𝑥  ∈  𝑢 ,  𝑦  ∈  𝑢  ↦  ( 𝑦  ↑m  𝑥 ) ) 〉 ,  〈 ( comp ‘ ndx ) ,  ( 𝑣  ∈  ( 𝑢  ×  𝑢 ) ,  𝑧  ∈  𝑢  ↦  ( 𝑔  ∈  ( 𝑧  ↑m  ( 2nd  ‘ 𝑣 ) ) ,  𝑓  ∈  ( ( 2nd  ‘ 𝑣 )  ↑m  ( 1st  ‘ 𝑣 ) )  ↦  ( 𝑔  ∘  𝑓 ) ) ) 〉 }  =  { 〈 ( Base ‘ ndx ) ,  𝑈 〉 ,  〈 ( Hom  ‘ ndx ) ,  𝐻 〉 ,  〈 ( comp ‘ ndx ) ,   ·  〉 } )  | 
						
						
							| 20 | 
							
								2
							 | 
							elexd | 
							⊢ ( 𝜑  →  𝑈  ∈  V )  | 
						
						
							| 21 | 
							
								
							 | 
							tpex | 
							⊢ { 〈 ( Base ‘ ndx ) ,  𝑈 〉 ,  〈 ( Hom  ‘ ndx ) ,  𝐻 〉 ,  〈 ( comp ‘ ndx ) ,   ·  〉 }  ∈  V  | 
						
						
							| 22 | 
							
								21
							 | 
							a1i | 
							⊢ ( 𝜑  →  { 〈 ( Base ‘ ndx ) ,  𝑈 〉 ,  〈 ( Hom  ‘ ndx ) ,  𝐻 〉 ,  〈 ( comp ‘ ndx ) ,   ·  〉 }  ∈  V )  | 
						
						
							| 23 | 
							
								5 19 20 22
							 | 
							fvmptd2 | 
							⊢ ( 𝜑  →  ( SetCat ‘ 𝑈 )  =  { 〈 ( Base ‘ ndx ) ,  𝑈 〉 ,  〈 ( Hom  ‘ ndx ) ,  𝐻 〉 ,  〈 ( comp ‘ ndx ) ,   ·  〉 } )  | 
						
						
							| 24 | 
							
								1 23
							 | 
							eqtrid | 
							⊢ ( 𝜑  →  𝐶  =  { 〈 ( Base ‘ ndx ) ,  𝑈 〉 ,  〈 ( Hom  ‘ ndx ) ,  𝐻 〉 ,  〈 ( comp ‘ ndx ) ,   ·  〉 } )  |