| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							setcbas.c | 
							 |-  C = ( SetCat ` U )  | 
						
						
							| 2 | 
							
								
							 | 
							setcbas.u | 
							 |-  ( ph -> U e. V )  | 
						
						
							| 3 | 
							
								
							 | 
							catstr | 
							 |-  { <. ( Base ` ndx ) , U >. , <. ( Hom ` ndx ) , ( x e. U , y e. U |-> ( y ^m x ) ) >. , <. ( comp ` ndx ) , ( v e. ( U X. U ) , z e. U |-> ( g e. ( z ^m ( 2nd ` v ) ) , f e. ( ( 2nd ` v ) ^m ( 1st ` v ) ) |-> ( g o. f ) ) ) >. } Struct <. 1 , ; 1 5 >. | 
						
						
							| 4 | 
							
								
							 | 
							baseid | 
							 |-  Base = Slot ( Base ` ndx )  | 
						
						
							| 5 | 
							
								
							 | 
							snsstp1 | 
							 |-  { <. ( Base ` ndx ) , U >. } C_ { <. ( Base ` ndx ) , U >. , <. ( Hom ` ndx ) , ( x e. U , y e. U |-> ( y ^m x ) ) >. , <. ( comp ` ndx ) , ( v e. ( U X. U ) , z e. U |-> ( g e. ( z ^m ( 2nd ` v ) ) , f e. ( ( 2nd ` v ) ^m ( 1st ` v ) ) |-> ( g o. f ) ) ) >. } | 
						
						
							| 6 | 
							
								3 4 5
							 | 
							strfv | 
							 |-  ( U e. V -> U = ( Base ` { <. ( Base ` ndx ) , U >. , <. ( Hom ` ndx ) , ( x e. U , y e. U |-> ( y ^m x ) ) >. , <. ( comp ` ndx ) , ( v e. ( U X. U ) , z e. U |-> ( g e. ( z ^m ( 2nd ` v ) ) , f e. ( ( 2nd ` v ) ^m ( 1st ` v ) ) |-> ( g o. f ) ) ) >. } ) ) | 
						
						
							| 7 | 
							
								2 6
							 | 
							syl | 
							 |-  ( ph -> U = ( Base ` { <. ( Base ` ndx ) , U >. , <. ( Hom ` ndx ) , ( x e. U , y e. U |-> ( y ^m x ) ) >. , <. ( comp ` ndx ) , ( v e. ( U X. U ) , z e. U |-> ( g e. ( z ^m ( 2nd ` v ) ) , f e. ( ( 2nd ` v ) ^m ( 1st ` v ) ) |-> ( g o. f ) ) ) >. } ) ) | 
						
						
							| 8 | 
							
								
							 | 
							eqidd | 
							 |-  ( ph -> ( x e. U , y e. U |-> ( y ^m x ) ) = ( x e. U , y e. U |-> ( y ^m x ) ) )  | 
						
						
							| 9 | 
							
								
							 | 
							eqidd | 
							 |-  ( ph -> ( v e. ( U X. U ) , z e. U |-> ( g e. ( z ^m ( 2nd ` v ) ) , f e. ( ( 2nd ` v ) ^m ( 1st ` v ) ) |-> ( g o. f ) ) ) = ( v e. ( U X. U ) , z e. U |-> ( g e. ( z ^m ( 2nd ` v ) ) , f e. ( ( 2nd ` v ) ^m ( 1st ` v ) ) |-> ( g o. f ) ) ) )  | 
						
						
							| 10 | 
							
								1 2 8 9
							 | 
							setcval | 
							 |-  ( ph -> C = { <. ( Base ` ndx ) , U >. , <. ( Hom ` ndx ) , ( x e. U , y e. U |-> ( y ^m x ) ) >. , <. ( comp ` ndx ) , ( v e. ( U X. U ) , z e. U |-> ( g e. ( z ^m ( 2nd ` v ) ) , f e. ( ( 2nd ` v ) ^m ( 1st ` v ) ) |-> ( g o. f ) ) ) >. } ) | 
						
						
							| 11 | 
							
								10
							 | 
							fveq2d | 
							 |-  ( ph -> ( Base ` C ) = ( Base ` { <. ( Base ` ndx ) , U >. , <. ( Hom ` ndx ) , ( x e. U , y e. U |-> ( y ^m x ) ) >. , <. ( comp ` ndx ) , ( v e. ( U X. U ) , z e. U |-> ( g e. ( z ^m ( 2nd ` v ) ) , f e. ( ( 2nd ` v ) ^m ( 1st ` v ) ) |-> ( g o. f ) ) ) >. } ) ) | 
						
						
							| 12 | 
							
								7 11
							 | 
							eqtr4d | 
							 |-  ( ph -> U = ( Base ` C ) )  |