Metamath Proof Explorer


Theorem catstr

Description: A category structure is a structure. (Contributed by Mario Carneiro, 3-Jan-2017)

Ref Expression
Assertion catstr
|- { <. ( Base ` ndx ) , U >. , <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .x. >. } Struct <. 1 , ; 1 5 >.

Proof

Step Hyp Ref Expression
1 1nn
 |-  1 e. NN
2 basendx
 |-  ( Base ` ndx ) = 1
3 4nn0
 |-  4 e. NN0
4 1nn0
 |-  1 e. NN0
5 1lt10
 |-  1 < ; 1 0
6 1 3 4 5 declti
 |-  1 < ; 1 4
7 4nn
 |-  4 e. NN
8 4 7 decnncl
 |-  ; 1 4 e. NN
9 homndx
 |-  ( Hom ` ndx ) = ; 1 4
10 5nn
 |-  5 e. NN
11 4lt5
 |-  4 < 5
12 4 3 10 11 declt
 |-  ; 1 4 < ; 1 5
13 4 10 decnncl
 |-  ; 1 5 e. NN
14 ccondx
 |-  ( comp ` ndx ) = ; 1 5
15 1 2 6 8 9 12 13 14 strle3
 |-  { <. ( Base ` ndx ) , U >. , <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .x. >. } Struct <. 1 , ; 1 5 >.