Description: Identity function of an opposite category. (Contributed by Mario Carneiro, 2-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oppcbas.1 | ⊢ 𝑂 = ( oppCat ‘ 𝐶 ) | |
| oppcid.2 | ⊢ 𝐵 = ( Id ‘ 𝐶 ) | ||
| Assertion | oppcid | ⊢ ( 𝐶 ∈ Cat → ( Id ‘ 𝑂 ) = 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppcbas.1 | ⊢ 𝑂 = ( oppCat ‘ 𝐶 ) | |
| 2 | oppcid.2 | ⊢ 𝐵 = ( Id ‘ 𝐶 ) | |
| 3 | 1 | oppccatid | ⊢ ( 𝐶 ∈ Cat → ( 𝑂 ∈ Cat ∧ ( Id ‘ 𝑂 ) = ( Id ‘ 𝐶 ) ) ) |
| 4 | 3 | simprd | ⊢ ( 𝐶 ∈ Cat → ( Id ‘ 𝑂 ) = ( Id ‘ 𝐶 ) ) |
| 5 | 4 2 | eqtr4di | ⊢ ( 𝐶 ∈ Cat → ( Id ‘ 𝑂 ) = 𝐵 ) |