| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oppcbas.1 |
⊢ 𝑂 = ( oppCat ‘ 𝐶 ) |
| 2 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
| 3 |
1 2
|
oppcbas |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝑂 ) |
| 4 |
3
|
a1i |
⊢ ( 𝐶 ∈ Cat → ( Base ‘ 𝐶 ) = ( Base ‘ 𝑂 ) ) |
| 5 |
|
eqidd |
⊢ ( 𝐶 ∈ Cat → ( Hom ‘ 𝑂 ) = ( Hom ‘ 𝑂 ) ) |
| 6 |
|
eqidd |
⊢ ( 𝐶 ∈ Cat → ( comp ‘ 𝑂 ) = ( comp ‘ 𝑂 ) ) |
| 7 |
1
|
fvexi |
⊢ 𝑂 ∈ V |
| 8 |
7
|
a1i |
⊢ ( 𝐶 ∈ Cat → 𝑂 ∈ V ) |
| 9 |
|
biid |
⊢ ( ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝑂 ) 𝑤 ) ) ) ↔ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝑂 ) 𝑤 ) ) ) ) |
| 10 |
|
eqid |
⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) |
| 11 |
|
eqid |
⊢ ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 ) |
| 12 |
|
simpl |
⊢ ( ( 𝐶 ∈ Cat ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) → 𝐶 ∈ Cat ) |
| 13 |
|
simpr |
⊢ ( ( 𝐶 ∈ Cat ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) → 𝑦 ∈ ( Base ‘ 𝐶 ) ) |
| 14 |
2 10 11 12 13
|
catidcl |
⊢ ( ( 𝐶 ∈ Cat ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) → ( ( Id ‘ 𝐶 ) ‘ 𝑦 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑦 ) ) |
| 15 |
10 1
|
oppchom |
⊢ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑦 ) = ( 𝑦 ( Hom ‘ 𝐶 ) 𝑦 ) |
| 16 |
14 15
|
eleqtrrdi |
⊢ ( ( 𝐶 ∈ Cat ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) → ( ( Id ‘ 𝐶 ) ‘ 𝑦 ) ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑦 ) ) |
| 17 |
|
eqid |
⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) |
| 18 |
|
simpr1l |
⊢ ( ( 𝐶 ∈ Cat ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝑂 ) 𝑤 ) ) ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) |
| 19 |
|
simpr1r |
⊢ ( ( 𝐶 ∈ Cat ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝑂 ) 𝑤 ) ) ) ) → 𝑦 ∈ ( Base ‘ 𝐶 ) ) |
| 20 |
2 17 1 18 19 19
|
oppcco |
⊢ ( ( 𝐶 ∈ Cat ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝑂 ) 𝑤 ) ) ) ) → ( ( ( Id ‘ 𝐶 ) ‘ 𝑦 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑂 ) 𝑦 ) 𝑓 ) = ( 𝑓 ( 〈 𝑦 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑥 ) ( ( Id ‘ 𝐶 ) ‘ 𝑦 ) ) ) |
| 21 |
|
simpl |
⊢ ( ( 𝐶 ∈ Cat ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝑂 ) 𝑤 ) ) ) ) → 𝐶 ∈ Cat ) |
| 22 |
|
simpr31 |
⊢ ( ( 𝐶 ∈ Cat ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝑂 ) 𝑤 ) ) ) ) → 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ) |
| 23 |
10 1
|
oppchom |
⊢ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) = ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) |
| 24 |
22 23
|
eleqtrdi |
⊢ ( ( 𝐶 ∈ Cat ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝑂 ) 𝑤 ) ) ) ) → 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ) |
| 25 |
2 10 11 21 19 17 18 24
|
catrid |
⊢ ( ( 𝐶 ∈ Cat ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝑂 ) 𝑤 ) ) ) ) → ( 𝑓 ( 〈 𝑦 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑥 ) ( ( Id ‘ 𝐶 ) ‘ 𝑦 ) ) = 𝑓 ) |
| 26 |
20 25
|
eqtrd |
⊢ ( ( 𝐶 ∈ Cat ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝑂 ) 𝑤 ) ) ) ) → ( ( ( Id ‘ 𝐶 ) ‘ 𝑦 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑂 ) 𝑦 ) 𝑓 ) = 𝑓 ) |
| 27 |
|
simpr2l |
⊢ ( ( 𝐶 ∈ Cat ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝑂 ) 𝑤 ) ) ) ) → 𝑧 ∈ ( Base ‘ 𝐶 ) ) |
| 28 |
2 17 1 19 19 27
|
oppcco |
⊢ ( ( 𝐶 ∈ Cat ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝑂 ) 𝑤 ) ) ) ) → ( 𝑔 ( 〈 𝑦 , 𝑦 〉 ( comp ‘ 𝑂 ) 𝑧 ) ( ( Id ‘ 𝐶 ) ‘ 𝑦 ) ) = ( ( ( Id ‘ 𝐶 ) ‘ 𝑦 ) ( 〈 𝑧 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) ) |
| 29 |
|
simpr32 |
⊢ ( ( 𝐶 ∈ Cat ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝑂 ) 𝑤 ) ) ) ) → 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ) |
| 30 |
10 1
|
oppchom |
⊢ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) = ( 𝑧 ( Hom ‘ 𝐶 ) 𝑦 ) |
| 31 |
29 30
|
eleqtrdi |
⊢ ( ( 𝐶 ∈ Cat ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝑂 ) 𝑤 ) ) ) ) → 𝑔 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑦 ) ) |
| 32 |
2 10 11 21 27 17 19 31
|
catlid |
⊢ ( ( 𝐶 ∈ Cat ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝑂 ) 𝑤 ) ) ) ) → ( ( ( Id ‘ 𝐶 ) ‘ 𝑦 ) ( 〈 𝑧 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = 𝑔 ) |
| 33 |
28 32
|
eqtrd |
⊢ ( ( 𝐶 ∈ Cat ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝑂 ) 𝑤 ) ) ) ) → ( 𝑔 ( 〈 𝑦 , 𝑦 〉 ( comp ‘ 𝑂 ) 𝑧 ) ( ( Id ‘ 𝐶 ) ‘ 𝑦 ) ) = 𝑔 ) |
| 34 |
2 17 1 18 19 27
|
oppcco |
⊢ ( ( 𝐶 ∈ Cat ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝑂 ) 𝑤 ) ) ) ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑂 ) 𝑧 ) 𝑓 ) = ( 𝑓 ( 〈 𝑧 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑔 ) ) |
| 35 |
2 10 17 21 27 19 18 31 24
|
catcocl |
⊢ ( ( 𝐶 ∈ Cat ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝑂 ) 𝑤 ) ) ) ) → ( 𝑓 ( 〈 𝑧 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑔 ) ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑥 ) ) |
| 36 |
34 35
|
eqeltrd |
⊢ ( ( 𝐶 ∈ Cat ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝑂 ) 𝑤 ) ) ) ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑂 ) 𝑧 ) 𝑓 ) ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑥 ) ) |
| 37 |
10 1
|
oppchom |
⊢ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑧 ) = ( 𝑧 ( Hom ‘ 𝐶 ) 𝑥 ) |
| 38 |
36 37
|
eleqtrrdi |
⊢ ( ( 𝐶 ∈ Cat ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝑂 ) 𝑤 ) ) ) ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑂 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑧 ) ) |
| 39 |
|
simpr2r |
⊢ ( ( 𝐶 ∈ Cat ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝑂 ) 𝑤 ) ) ) ) → 𝑤 ∈ ( Base ‘ 𝐶 ) ) |
| 40 |
|
simpr33 |
⊢ ( ( 𝐶 ∈ Cat ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝑂 ) 𝑤 ) ) ) ) → ℎ ∈ ( 𝑧 ( Hom ‘ 𝑂 ) 𝑤 ) ) |
| 41 |
10 1
|
oppchom |
⊢ ( 𝑧 ( Hom ‘ 𝑂 ) 𝑤 ) = ( 𝑤 ( Hom ‘ 𝐶 ) 𝑧 ) |
| 42 |
40 41
|
eleqtrdi |
⊢ ( ( 𝐶 ∈ Cat ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝑂 ) 𝑤 ) ) ) ) → ℎ ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑧 ) ) |
| 43 |
2 10 17 21 39 27 19 42 31 18 24
|
catass |
⊢ ( ( 𝐶 ∈ Cat ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝑂 ) 𝑤 ) ) ) ) → ( ( 𝑓 ( 〈 𝑧 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑔 ) ( 〈 𝑤 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑥 ) ℎ ) = ( 𝑓 ( 〈 𝑤 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( 〈 𝑤 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑦 ) ℎ ) ) ) |
| 44 |
2 17 1 18 27 39
|
oppcco |
⊢ ( ( 𝐶 ∈ Cat ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝑂 ) 𝑤 ) ) ) ) → ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝑂 ) 𝑤 ) ( 𝑓 ( 〈 𝑧 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑔 ) ) = ( ( 𝑓 ( 〈 𝑧 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑔 ) ( 〈 𝑤 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑥 ) ℎ ) ) |
| 45 |
2 17 1 18 19 39
|
oppcco |
⊢ ( ( 𝐶 ∈ Cat ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝑂 ) 𝑤 ) ) ) ) → ( ( 𝑔 ( 〈 𝑤 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑦 ) ℎ ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑂 ) 𝑤 ) 𝑓 ) = ( 𝑓 ( 〈 𝑤 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( 〈 𝑤 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑦 ) ℎ ) ) ) |
| 46 |
43 44 45
|
3eqtr4rd |
⊢ ( ( 𝐶 ∈ Cat ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝑂 ) 𝑤 ) ) ) ) → ( ( 𝑔 ( 〈 𝑤 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑦 ) ℎ ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑂 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝑂 ) 𝑤 ) ( 𝑓 ( 〈 𝑧 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑔 ) ) ) |
| 47 |
2 17 1 19 27 39
|
oppcco |
⊢ ( ( 𝐶 ∈ Cat ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝑂 ) 𝑤 ) ) ) ) → ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝑂 ) 𝑤 ) 𝑔 ) = ( 𝑔 ( 〈 𝑤 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑦 ) ℎ ) ) |
| 48 |
47
|
oveq1d |
⊢ ( ( 𝐶 ∈ Cat ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝑂 ) 𝑤 ) ) ) ) → ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝑂 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑂 ) 𝑤 ) 𝑓 ) = ( ( 𝑔 ( 〈 𝑤 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑦 ) ℎ ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑂 ) 𝑤 ) 𝑓 ) ) |
| 49 |
34
|
oveq2d |
⊢ ( ( 𝐶 ∈ Cat ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝑂 ) 𝑤 ) ) ) ) → ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝑂 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑂 ) 𝑧 ) 𝑓 ) ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝑂 ) 𝑤 ) ( 𝑓 ( 〈 𝑧 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑔 ) ) ) |
| 50 |
46 48 49
|
3eqtr4d |
⊢ ( ( 𝐶 ∈ Cat ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝑂 ) 𝑤 ) ) ) ) → ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝑂 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑂 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝑂 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑂 ) 𝑧 ) 𝑓 ) ) ) |
| 51 |
4 5 6 8 9 16 26 33 38 50
|
iscatd2 |
⊢ ( 𝐶 ∈ Cat → ( 𝑂 ∈ Cat ∧ ( Id ‘ 𝑂 ) = ( 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( ( Id ‘ 𝐶 ) ‘ 𝑦 ) ) ) ) |
| 52 |
2 11
|
cidfn |
⊢ ( 𝐶 ∈ Cat → ( Id ‘ 𝐶 ) Fn ( Base ‘ 𝐶 ) ) |
| 53 |
|
dffn5 |
⊢ ( ( Id ‘ 𝐶 ) Fn ( Base ‘ 𝐶 ) ↔ ( Id ‘ 𝐶 ) = ( 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( ( Id ‘ 𝐶 ) ‘ 𝑦 ) ) ) |
| 54 |
52 53
|
sylib |
⊢ ( 𝐶 ∈ Cat → ( Id ‘ 𝐶 ) = ( 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( ( Id ‘ 𝐶 ) ‘ 𝑦 ) ) ) |
| 55 |
54
|
eqeq2d |
⊢ ( 𝐶 ∈ Cat → ( ( Id ‘ 𝑂 ) = ( Id ‘ 𝐶 ) ↔ ( Id ‘ 𝑂 ) = ( 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( ( Id ‘ 𝐶 ) ‘ 𝑦 ) ) ) ) |
| 56 |
55
|
anbi2d |
⊢ ( 𝐶 ∈ Cat → ( ( 𝑂 ∈ Cat ∧ ( Id ‘ 𝑂 ) = ( Id ‘ 𝐶 ) ) ↔ ( 𝑂 ∈ Cat ∧ ( Id ‘ 𝑂 ) = ( 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( ( Id ‘ 𝐶 ) ‘ 𝑦 ) ) ) ) ) |
| 57 |
51 56
|
mpbird |
⊢ ( 𝐶 ∈ Cat → ( 𝑂 ∈ Cat ∧ ( Id ‘ 𝑂 ) = ( Id ‘ 𝐶 ) ) ) |