Metamath Proof Explorer


Theorem oppcco

Description: Composition in the opposite category. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Hypotheses oppcco.b 𝐵 = ( Base ‘ 𝐶 )
oppcco.c · = ( comp ‘ 𝐶 )
oppcco.o 𝑂 = ( oppCat ‘ 𝐶 )
oppcco.x ( 𝜑𝑋𝐵 )
oppcco.y ( 𝜑𝑌𝐵 )
oppcco.z ( 𝜑𝑍𝐵 )
Assertion oppcco ( 𝜑 → ( 𝐺 ( ⟨ 𝑋 , 𝑌 ⟩ ( comp ‘ 𝑂 ) 𝑍 ) 𝐹 ) = ( 𝐹 ( ⟨ 𝑍 , 𝑌· 𝑋 ) 𝐺 ) )

Proof

Step Hyp Ref Expression
1 oppcco.b 𝐵 = ( Base ‘ 𝐶 )
2 oppcco.c · = ( comp ‘ 𝐶 )
3 oppcco.o 𝑂 = ( oppCat ‘ 𝐶 )
4 oppcco.x ( 𝜑𝑋𝐵 )
5 oppcco.y ( 𝜑𝑌𝐵 )
6 oppcco.z ( 𝜑𝑍𝐵 )
7 1 2 3 4 5 6 oppccofval ( 𝜑 → ( ⟨ 𝑋 , 𝑌 ⟩ ( comp ‘ 𝑂 ) 𝑍 ) = tpos ( ⟨ 𝑍 , 𝑌· 𝑋 ) )
8 7 oveqd ( 𝜑 → ( 𝐺 ( ⟨ 𝑋 , 𝑌 ⟩ ( comp ‘ 𝑂 ) 𝑍 ) 𝐹 ) = ( 𝐺 tpos ( ⟨ 𝑍 , 𝑌· 𝑋 ) 𝐹 ) )
9 ovtpos ( 𝐺 tpos ( ⟨ 𝑍 , 𝑌· 𝑋 ) 𝐹 ) = ( 𝐹 ( ⟨ 𝑍 , 𝑌· 𝑋 ) 𝐺 )
10 8 9 eqtrdi ( 𝜑 → ( 𝐺 ( ⟨ 𝑋 , 𝑌 ⟩ ( comp ‘ 𝑂 ) 𝑍 ) 𝐹 ) = ( 𝐹 ( ⟨ 𝑍 , 𝑌· 𝑋 ) 𝐺 ) )