| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							oppcco.b | 
							 |-  B = ( Base ` C )  | 
						
						
							| 2 | 
							
								
							 | 
							oppcco.c | 
							 |-  .x. = ( comp ` C )  | 
						
						
							| 3 | 
							
								
							 | 
							oppcco.o | 
							 |-  O = ( oppCat ` C )  | 
						
						
							| 4 | 
							
								
							 | 
							oppcco.x | 
							 |-  ( ph -> X e. B )  | 
						
						
							| 5 | 
							
								
							 | 
							oppcco.y | 
							 |-  ( ph -> Y e. B )  | 
						
						
							| 6 | 
							
								
							 | 
							oppcco.z | 
							 |-  ( ph -> Z e. B )  | 
						
						
							| 7 | 
							
								1 2 3 4 5 6
							 | 
							oppccofval | 
							 |-  ( ph -> ( <. X , Y >. ( comp ` O ) Z ) = tpos ( <. Z , Y >. .x. X ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							oveqd | 
							 |-  ( ph -> ( G ( <. X , Y >. ( comp ` O ) Z ) F ) = ( G tpos ( <. Z , Y >. .x. X ) F ) )  | 
						
						
							| 9 | 
							
								
							 | 
							ovtpos | 
							 |-  ( G tpos ( <. Z , Y >. .x. X ) F ) = ( F ( <. Z , Y >. .x. X ) G )  | 
						
						
							| 10 | 
							
								8 9
							 | 
							eqtrdi | 
							 |-  ( ph -> ( G ( <. X , Y >. ( comp ` O ) Z ) F ) = ( F ( <. Z , Y >. .x. X ) G ) )  |