Step |
Hyp |
Ref |
Expression |
1 |
|
oppcco.b |
|- B = ( Base ` C ) |
2 |
|
oppcco.c |
|- .x. = ( comp ` C ) |
3 |
|
oppcco.o |
|- O = ( oppCat ` C ) |
4 |
|
oppcco.x |
|- ( ph -> X e. B ) |
5 |
|
oppcco.y |
|- ( ph -> Y e. B ) |
6 |
|
oppcco.z |
|- ( ph -> Z e. B ) |
7 |
|
elfvex |
|- ( X e. ( Base ` C ) -> C e. _V ) |
8 |
7 1
|
eleq2s |
|- ( X e. B -> C e. _V ) |
9 |
|
eqid |
|- ( Hom ` C ) = ( Hom ` C ) |
10 |
1 9 2 3
|
oppcval |
|- ( C e. _V -> O = ( ( C sSet <. ( Hom ` ndx ) , tpos ( Hom ` C ) >. ) sSet <. ( comp ` ndx ) , ( u e. ( B X. B ) , z e. B |-> tpos ( <. z , ( 2nd ` u ) >. .x. ( 1st ` u ) ) ) >. ) ) |
11 |
4 8 10
|
3syl |
|- ( ph -> O = ( ( C sSet <. ( Hom ` ndx ) , tpos ( Hom ` C ) >. ) sSet <. ( comp ` ndx ) , ( u e. ( B X. B ) , z e. B |-> tpos ( <. z , ( 2nd ` u ) >. .x. ( 1st ` u ) ) ) >. ) ) |
12 |
11
|
fveq2d |
|- ( ph -> ( comp ` O ) = ( comp ` ( ( C sSet <. ( Hom ` ndx ) , tpos ( Hom ` C ) >. ) sSet <. ( comp ` ndx ) , ( u e. ( B X. B ) , z e. B |-> tpos ( <. z , ( 2nd ` u ) >. .x. ( 1st ` u ) ) ) >. ) ) ) |
13 |
|
ovex |
|- ( C sSet <. ( Hom ` ndx ) , tpos ( Hom ` C ) >. ) e. _V |
14 |
1
|
fvexi |
|- B e. _V |
15 |
14 14
|
xpex |
|- ( B X. B ) e. _V |
16 |
15 14
|
mpoex |
|- ( u e. ( B X. B ) , z e. B |-> tpos ( <. z , ( 2nd ` u ) >. .x. ( 1st ` u ) ) ) e. _V |
17 |
|
ccoid |
|- comp = Slot ( comp ` ndx ) |
18 |
17
|
setsid |
|- ( ( ( C sSet <. ( Hom ` ndx ) , tpos ( Hom ` C ) >. ) e. _V /\ ( u e. ( B X. B ) , z e. B |-> tpos ( <. z , ( 2nd ` u ) >. .x. ( 1st ` u ) ) ) e. _V ) -> ( u e. ( B X. B ) , z e. B |-> tpos ( <. z , ( 2nd ` u ) >. .x. ( 1st ` u ) ) ) = ( comp ` ( ( C sSet <. ( Hom ` ndx ) , tpos ( Hom ` C ) >. ) sSet <. ( comp ` ndx ) , ( u e. ( B X. B ) , z e. B |-> tpos ( <. z , ( 2nd ` u ) >. .x. ( 1st ` u ) ) ) >. ) ) ) |
19 |
13 16 18
|
mp2an |
|- ( u e. ( B X. B ) , z e. B |-> tpos ( <. z , ( 2nd ` u ) >. .x. ( 1st ` u ) ) ) = ( comp ` ( ( C sSet <. ( Hom ` ndx ) , tpos ( Hom ` C ) >. ) sSet <. ( comp ` ndx ) , ( u e. ( B X. B ) , z e. B |-> tpos ( <. z , ( 2nd ` u ) >. .x. ( 1st ` u ) ) ) >. ) ) |
20 |
12 19
|
eqtr4di |
|- ( ph -> ( comp ` O ) = ( u e. ( B X. B ) , z e. B |-> tpos ( <. z , ( 2nd ` u ) >. .x. ( 1st ` u ) ) ) ) |
21 |
|
simprr |
|- ( ( ph /\ ( u = <. X , Y >. /\ z = Z ) ) -> z = Z ) |
22 |
|
simprl |
|- ( ( ph /\ ( u = <. X , Y >. /\ z = Z ) ) -> u = <. X , Y >. ) |
23 |
22
|
fveq2d |
|- ( ( ph /\ ( u = <. X , Y >. /\ z = Z ) ) -> ( 2nd ` u ) = ( 2nd ` <. X , Y >. ) ) |
24 |
5
|
adantr |
|- ( ( ph /\ ( u = <. X , Y >. /\ z = Z ) ) -> Y e. B ) |
25 |
|
op2ndg |
|- ( ( X e. B /\ Y e. B ) -> ( 2nd ` <. X , Y >. ) = Y ) |
26 |
4 24 25
|
syl2an2r |
|- ( ( ph /\ ( u = <. X , Y >. /\ z = Z ) ) -> ( 2nd ` <. X , Y >. ) = Y ) |
27 |
23 26
|
eqtrd |
|- ( ( ph /\ ( u = <. X , Y >. /\ z = Z ) ) -> ( 2nd ` u ) = Y ) |
28 |
21 27
|
opeq12d |
|- ( ( ph /\ ( u = <. X , Y >. /\ z = Z ) ) -> <. z , ( 2nd ` u ) >. = <. Z , Y >. ) |
29 |
22
|
fveq2d |
|- ( ( ph /\ ( u = <. X , Y >. /\ z = Z ) ) -> ( 1st ` u ) = ( 1st ` <. X , Y >. ) ) |
30 |
|
op1stg |
|- ( ( X e. B /\ Y e. B ) -> ( 1st ` <. X , Y >. ) = X ) |
31 |
4 24 30
|
syl2an2r |
|- ( ( ph /\ ( u = <. X , Y >. /\ z = Z ) ) -> ( 1st ` <. X , Y >. ) = X ) |
32 |
29 31
|
eqtrd |
|- ( ( ph /\ ( u = <. X , Y >. /\ z = Z ) ) -> ( 1st ` u ) = X ) |
33 |
28 32
|
oveq12d |
|- ( ( ph /\ ( u = <. X , Y >. /\ z = Z ) ) -> ( <. z , ( 2nd ` u ) >. .x. ( 1st ` u ) ) = ( <. Z , Y >. .x. X ) ) |
34 |
33
|
tposeqd |
|- ( ( ph /\ ( u = <. X , Y >. /\ z = Z ) ) -> tpos ( <. z , ( 2nd ` u ) >. .x. ( 1st ` u ) ) = tpos ( <. Z , Y >. .x. X ) ) |
35 |
4 5
|
opelxpd |
|- ( ph -> <. X , Y >. e. ( B X. B ) ) |
36 |
|
ovex |
|- ( <. Z , Y >. .x. X ) e. _V |
37 |
36
|
tposex |
|- tpos ( <. Z , Y >. .x. X ) e. _V |
38 |
37
|
a1i |
|- ( ph -> tpos ( <. Z , Y >. .x. X ) e. _V ) |
39 |
20 34 35 6 38
|
ovmpod |
|- ( ph -> ( <. X , Y >. ( comp ` O ) Z ) = tpos ( <. Z , Y >. .x. X ) ) |