Metamath Proof Explorer


Theorem cidfn

Description: The identity arrow operator is a function from objects to arrows. (Contributed by Mario Carneiro, 4-Jan-2017)

Ref Expression
Hypotheses cidfn.b 𝐵 = ( Base ‘ 𝐶 )
cidfn.i 1 = ( Id ‘ 𝐶 )
Assertion cidfn ( 𝐶 ∈ Cat → 1 Fn 𝐵 )

Proof

Step Hyp Ref Expression
1 cidfn.b 𝐵 = ( Base ‘ 𝐶 )
2 cidfn.i 1 = ( Id ‘ 𝐶 )
3 riotaex ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ∀ 𝑦𝐵 ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( ⟨ 𝑦 , 𝑥 ⟩ ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( ⟨ 𝑥 , 𝑥 ⟩ ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = 𝑓 ) ) ∈ V
4 eqid ( 𝑥𝐵 ↦ ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ∀ 𝑦𝐵 ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( ⟨ 𝑦 , 𝑥 ⟩ ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( ⟨ 𝑥 , 𝑥 ⟩ ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = 𝑓 ) ) ) = ( 𝑥𝐵 ↦ ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ∀ 𝑦𝐵 ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( ⟨ 𝑦 , 𝑥 ⟩ ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( ⟨ 𝑥 , 𝑥 ⟩ ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = 𝑓 ) ) )
5 3 4 fnmpti ( 𝑥𝐵 ↦ ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ∀ 𝑦𝐵 ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( ⟨ 𝑦 , 𝑥 ⟩ ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( ⟨ 𝑥 , 𝑥 ⟩ ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = 𝑓 ) ) ) Fn 𝐵
6 eqid ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 )
7 eqid ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 )
8 id ( 𝐶 ∈ Cat → 𝐶 ∈ Cat )
9 1 6 7 8 2 cidfval ( 𝐶 ∈ Cat → 1 = ( 𝑥𝐵 ↦ ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ∀ 𝑦𝐵 ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( ⟨ 𝑦 , 𝑥 ⟩ ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( ⟨ 𝑥 , 𝑥 ⟩ ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = 𝑓 ) ) ) )
10 9 fneq1d ( 𝐶 ∈ Cat → ( 1 Fn 𝐵 ↔ ( 𝑥𝐵 ↦ ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ∀ 𝑦𝐵 ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( ⟨ 𝑦 , 𝑥 ⟩ ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( ⟨ 𝑥 , 𝑥 ⟩ ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = 𝑓 ) ) ) Fn 𝐵 ) )
11 5 10 mpbiri ( 𝐶 ∈ Cat → 1 Fn 𝐵 )