Metamath Proof Explorer


Theorem cidfn

Description: The identity arrow operator is a function from objects to arrows. (Contributed by Mario Carneiro, 4-Jan-2017)

Ref Expression
Hypotheses cidfn.b B=BaseC
cidfn.i 1˙=IdC
Assertion cidfn CCat1˙FnB

Proof

Step Hyp Ref Expression
1 cidfn.b B=BaseC
2 cidfn.i 1˙=IdC
3 riotaex ιgxHomCx|yBfyHomCxgyxcompCxf=ffxHomCyfxxcompCyg=fV
4 eqid xBιgxHomCx|yBfyHomCxgyxcompCxf=ffxHomCyfxxcompCyg=f=xBιgxHomCx|yBfyHomCxgyxcompCxf=ffxHomCyfxxcompCyg=f
5 3 4 fnmpti xBιgxHomCx|yBfyHomCxgyxcompCxf=ffxHomCyfxxcompCyg=fFnB
6 eqid HomC=HomC
7 eqid compC=compC
8 id CCatCCat
9 1 6 7 8 2 cidfval CCat1˙=xBιgxHomCx|yBfyHomCxgyxcompCxf=ffxHomCyfxxcompCyg=f
10 9 fneq1d CCat1˙FnBxBιgxHomCx|yBfyHomCxgyxcompCxf=ffxHomCyfxxcompCyg=fFnB
11 5 10 mpbiri CCat1˙FnB