Description: Deduce the identity arrow in a category. (Contributed by Mario Carneiro, 3-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | catidd.b | |
|
catidd.h | |
||
catidd.o | |
||
catidd.c | |
||
catidd.1 | |
||
catidd.2 | |
||
catidd.3 | |
||
Assertion | catidd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | catidd.b | |
|
2 | catidd.h | |
|
3 | catidd.o | |
|
4 | catidd.c | |
|
5 | catidd.1 | |
|
6 | catidd.2 | |
|
7 | catidd.3 | |
|
8 | 6 | ex | |
9 | 1 | eleq2d | |
10 | 1 | eleq2d | |
11 | 2 | oveqd | |
12 | 11 | eleq2d | |
13 | 9 10 12 | 3anbi123d | |
14 | 3 | oveqd | |
15 | 14 | oveqd | |
16 | 15 | eqeq1d | |
17 | 8 13 16 | 3imtr3d | |
18 | 17 | 3expd | |
19 | 18 | imp41 | |
20 | 19 | ralrimiva | |
21 | 7 | ex | |
22 | 2 | oveqd | |
23 | 22 | eleq2d | |
24 | 9 10 23 | 3anbi123d | |
25 | 3 | oveqd | |
26 | 25 | oveqd | |
27 | 26 | eqeq1d | |
28 | 21 24 27 | 3imtr3d | |
29 | 28 | 3expd | |
30 | 29 | imp41 | |
31 | 30 | ralrimiva | |
32 | 20 31 | jca | |
33 | 32 | ralrimiva | |
34 | 5 | ex | |
35 | 2 | oveqd | |
36 | 35 | eleq2d | |
37 | 34 9 36 | 3imtr3d | |
38 | 37 | imp | |
39 | eqid | |
|
40 | eqid | |
|
41 | eqid | |
|
42 | 4 | adantr | |
43 | simpr | |
|
44 | 39 40 41 42 43 | catideu | |
45 | oveq1 | |
|
46 | 45 | eqeq1d | |
47 | 46 | ralbidv | |
48 | oveq2 | |
|
49 | 48 | eqeq1d | |
50 | 49 | ralbidv | |
51 | 47 50 | anbi12d | |
52 | 51 | ralbidv | |
53 | 52 | riota2 | |
54 | 38 44 53 | syl2anc | |
55 | 33 54 | mpbid | |
56 | 55 | mpteq2dva | |
57 | eqid | |
|
58 | 39 40 41 4 57 | cidfval | |
59 | 1 | mpteq1d | |
60 | 56 58 59 | 3eqtr4d | |