| Step |
Hyp |
Ref |
Expression |
| 1 |
|
catidd.b |
|
| 2 |
|
catidd.h |
|
| 3 |
|
catidd.o |
|
| 4 |
|
catidd.c |
|
| 5 |
|
catidd.1 |
|
| 6 |
|
catidd.2 |
|
| 7 |
|
catidd.3 |
|
| 8 |
6
|
ex |
|
| 9 |
1
|
eleq2d |
|
| 10 |
1
|
eleq2d |
|
| 11 |
2
|
oveqd |
|
| 12 |
11
|
eleq2d |
|
| 13 |
9 10 12
|
3anbi123d |
|
| 14 |
3
|
oveqd |
|
| 15 |
14
|
oveqd |
|
| 16 |
15
|
eqeq1d |
|
| 17 |
8 13 16
|
3imtr3d |
|
| 18 |
17
|
3expd |
|
| 19 |
18
|
imp41 |
|
| 20 |
19
|
ralrimiva |
|
| 21 |
7
|
ex |
|
| 22 |
2
|
oveqd |
|
| 23 |
22
|
eleq2d |
|
| 24 |
9 10 23
|
3anbi123d |
|
| 25 |
3
|
oveqd |
|
| 26 |
25
|
oveqd |
|
| 27 |
26
|
eqeq1d |
|
| 28 |
21 24 27
|
3imtr3d |
|
| 29 |
28
|
3expd |
|
| 30 |
29
|
imp41 |
|
| 31 |
30
|
ralrimiva |
|
| 32 |
20 31
|
jca |
|
| 33 |
32
|
ralrimiva |
|
| 34 |
5
|
ex |
|
| 35 |
2
|
oveqd |
|
| 36 |
35
|
eleq2d |
|
| 37 |
34 9 36
|
3imtr3d |
|
| 38 |
37
|
imp |
|
| 39 |
|
eqid |
|
| 40 |
|
eqid |
|
| 41 |
|
eqid |
|
| 42 |
4
|
adantr |
|
| 43 |
|
simpr |
|
| 44 |
39 40 41 42 43
|
catideu |
|
| 45 |
|
oveq1 |
|
| 46 |
45
|
eqeq1d |
|
| 47 |
46
|
ralbidv |
|
| 48 |
|
oveq2 |
|
| 49 |
48
|
eqeq1d |
|
| 50 |
49
|
ralbidv |
|
| 51 |
47 50
|
anbi12d |
|
| 52 |
51
|
ralbidv |
|
| 53 |
52
|
riota2 |
|
| 54 |
38 44 53
|
syl2anc |
|
| 55 |
33 54
|
mpbid |
|
| 56 |
55
|
mpteq2dva |
|
| 57 |
|
eqid |
|
| 58 |
39 40 41 4 57
|
cidfval |
|
| 59 |
1
|
mpteq1d |
|
| 60 |
56 58 59
|
3eqtr4d |
|