Step |
Hyp |
Ref |
Expression |
1 |
|
oppcbas.1 |
|
2 |
|
eqid |
|
3 |
1 2
|
oppcbas |
|
4 |
3
|
a1i |
|
5 |
|
eqidd |
|
6 |
|
eqidd |
|
7 |
1
|
fvexi |
|
8 |
7
|
a1i |
|
9 |
|
biid |
|
10 |
|
eqid |
|
11 |
|
eqid |
|
12 |
|
simpl |
|
13 |
|
simpr |
|
14 |
2 10 11 12 13
|
catidcl |
|
15 |
10 1
|
oppchom |
|
16 |
14 15
|
eleqtrrdi |
|
17 |
|
eqid |
|
18 |
|
simpr1l |
|
19 |
|
simpr1r |
|
20 |
2 17 1 18 19 19
|
oppcco |
|
21 |
|
simpl |
|
22 |
|
simpr31 |
|
23 |
10 1
|
oppchom |
|
24 |
22 23
|
eleqtrdi |
|
25 |
2 10 11 21 19 17 18 24
|
catrid |
|
26 |
20 25
|
eqtrd |
|
27 |
|
simpr2l |
|
28 |
2 17 1 19 19 27
|
oppcco |
|
29 |
|
simpr32 |
|
30 |
10 1
|
oppchom |
|
31 |
29 30
|
eleqtrdi |
|
32 |
2 10 11 21 27 17 19 31
|
catlid |
|
33 |
28 32
|
eqtrd |
|
34 |
2 17 1 18 19 27
|
oppcco |
|
35 |
2 10 17 21 27 19 18 31 24
|
catcocl |
|
36 |
34 35
|
eqeltrd |
|
37 |
10 1
|
oppchom |
|
38 |
36 37
|
eleqtrrdi |
|
39 |
|
simpr2r |
|
40 |
|
simpr33 |
|
41 |
10 1
|
oppchom |
|
42 |
40 41
|
eleqtrdi |
|
43 |
2 10 17 21 39 27 19 42 31 18 24
|
catass |
|
44 |
2 17 1 18 27 39
|
oppcco |
|
45 |
2 17 1 18 19 39
|
oppcco |
|
46 |
43 44 45
|
3eqtr4rd |
|
47 |
2 17 1 19 27 39
|
oppcco |
|
48 |
47
|
oveq1d |
|
49 |
34
|
oveq2d |
|
50 |
46 48 49
|
3eqtr4d |
|
51 |
4 5 6 8 9 16 26 33 38 50
|
iscatd2 |
|
52 |
2 11
|
cidfn |
|
53 |
|
dffn5 |
|
54 |
52 53
|
sylib |
|
55 |
54
|
eqeq2d |
|
56 |
55
|
anbi2d |
|
57 |
51 56
|
mpbird |
|