| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oppcbas.1 |
|
| 2 |
|
eqid |
|
| 3 |
1 2
|
oppcbas |
|
| 4 |
3
|
a1i |
|
| 5 |
|
eqidd |
|
| 6 |
|
eqidd |
|
| 7 |
1
|
fvexi |
|
| 8 |
7
|
a1i |
|
| 9 |
|
biid |
|
| 10 |
|
eqid |
|
| 11 |
|
eqid |
|
| 12 |
|
simpl |
|
| 13 |
|
simpr |
|
| 14 |
2 10 11 12 13
|
catidcl |
|
| 15 |
10 1
|
oppchom |
|
| 16 |
14 15
|
eleqtrrdi |
|
| 17 |
|
eqid |
|
| 18 |
|
simpr1l |
|
| 19 |
|
simpr1r |
|
| 20 |
2 17 1 18 19 19
|
oppcco |
|
| 21 |
|
simpl |
|
| 22 |
|
simpr31 |
|
| 23 |
10 1
|
oppchom |
|
| 24 |
22 23
|
eleqtrdi |
|
| 25 |
2 10 11 21 19 17 18 24
|
catrid |
|
| 26 |
20 25
|
eqtrd |
|
| 27 |
|
simpr2l |
|
| 28 |
2 17 1 19 19 27
|
oppcco |
|
| 29 |
|
simpr32 |
|
| 30 |
10 1
|
oppchom |
|
| 31 |
29 30
|
eleqtrdi |
|
| 32 |
2 10 11 21 27 17 19 31
|
catlid |
|
| 33 |
28 32
|
eqtrd |
|
| 34 |
2 17 1 18 19 27
|
oppcco |
|
| 35 |
2 10 17 21 27 19 18 31 24
|
catcocl |
|
| 36 |
34 35
|
eqeltrd |
|
| 37 |
10 1
|
oppchom |
|
| 38 |
36 37
|
eleqtrrdi |
|
| 39 |
|
simpr2r |
|
| 40 |
|
simpr33 |
|
| 41 |
10 1
|
oppchom |
|
| 42 |
40 41
|
eleqtrdi |
|
| 43 |
2 10 17 21 39 27 19 42 31 18 24
|
catass |
|
| 44 |
2 17 1 18 27 39
|
oppcco |
|
| 45 |
2 17 1 18 19 39
|
oppcco |
|
| 46 |
43 44 45
|
3eqtr4rd |
|
| 47 |
2 17 1 19 27 39
|
oppcco |
|
| 48 |
47
|
oveq1d |
|
| 49 |
34
|
oveq2d |
|
| 50 |
46 48 49
|
3eqtr4d |
|
| 51 |
4 5 6 8 9 16 26 33 38 50
|
iscatd2 |
|
| 52 |
2 11
|
cidfn |
|
| 53 |
|
dffn5 |
|
| 54 |
52 53
|
sylib |
|
| 55 |
54
|
eqeq2d |
|
| 56 |
55
|
anbi2d |
|
| 57 |
51 56
|
mpbird |
|