Description: Identity function of an opposite category. (Contributed by Mario Carneiro, 2-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oppcbas.1 | |- O = ( oppCat ` C ) |
|
| oppcid.2 | |- B = ( Id ` C ) |
||
| Assertion | oppcid | |- ( C e. Cat -> ( Id ` O ) = B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppcbas.1 | |- O = ( oppCat ` C ) |
|
| 2 | oppcid.2 | |- B = ( Id ` C ) |
|
| 3 | 1 | oppccatid | |- ( C e. Cat -> ( O e. Cat /\ ( Id ` O ) = ( Id ` C ) ) ) |
| 4 | 3 | simprd | |- ( C e. Cat -> ( Id ` O ) = ( Id ` C ) ) |
| 5 | 4 2 | eqtr4di | |- ( C e. Cat -> ( Id ` O ) = B ) |