| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hofcl.m |
|- M = ( HomF ` C ) |
| 2 |
|
hofcl.o |
|- O = ( oppCat ` C ) |
| 3 |
|
hofcl.d |
|- D = ( SetCat ` U ) |
| 4 |
|
hofcl.c |
|- ( ph -> C e. Cat ) |
| 5 |
|
hofcl.u |
|- ( ph -> U e. V ) |
| 6 |
|
hofcl.h |
|- ( ph -> ran ( Homf ` C ) C_ U ) |
| 7 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
| 8 |
|
eqid |
|- ( Hom ` C ) = ( Hom ` C ) |
| 9 |
|
eqid |
|- ( comp ` C ) = ( comp ` C ) |
| 10 |
1 4 7 8 9
|
hofval |
|- ( ph -> M = <. ( Homf ` C ) , ( x e. ( ( Base ` C ) X. ( Base ` C ) ) , y e. ( ( Base ` C ) X. ( Base ` C ) ) |-> ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) , g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) |-> ( h e. ( ( Hom ` C ) ` x ) |-> ( ( g ( x ( comp ` C ) ( 2nd ` y ) ) h ) ( <. ( 1st ` y ) , ( 1st ` x ) >. ( comp ` C ) ( 2nd ` y ) ) f ) ) ) ) >. ) |
| 11 |
|
fvex |
|- ( Homf ` C ) e. _V |
| 12 |
|
fvex |
|- ( Base ` C ) e. _V |
| 13 |
12 12
|
xpex |
|- ( ( Base ` C ) X. ( Base ` C ) ) e. _V |
| 14 |
13 13
|
mpoex |
|- ( x e. ( ( Base ` C ) X. ( Base ` C ) ) , y e. ( ( Base ` C ) X. ( Base ` C ) ) |-> ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) , g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) |-> ( h e. ( ( Hom ` C ) ` x ) |-> ( ( g ( x ( comp ` C ) ( 2nd ` y ) ) h ) ( <. ( 1st ` y ) , ( 1st ` x ) >. ( comp ` C ) ( 2nd ` y ) ) f ) ) ) ) e. _V |
| 15 |
11 14
|
op2ndd |
|- ( M = <. ( Homf ` C ) , ( x e. ( ( Base ` C ) X. ( Base ` C ) ) , y e. ( ( Base ` C ) X. ( Base ` C ) ) |-> ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) , g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) |-> ( h e. ( ( Hom ` C ) ` x ) |-> ( ( g ( x ( comp ` C ) ( 2nd ` y ) ) h ) ( <. ( 1st ` y ) , ( 1st ` x ) >. ( comp ` C ) ( 2nd ` y ) ) f ) ) ) ) >. -> ( 2nd ` M ) = ( x e. ( ( Base ` C ) X. ( Base ` C ) ) , y e. ( ( Base ` C ) X. ( Base ` C ) ) |-> ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) , g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) |-> ( h e. ( ( Hom ` C ) ` x ) |-> ( ( g ( x ( comp ` C ) ( 2nd ` y ) ) h ) ( <. ( 1st ` y ) , ( 1st ` x ) >. ( comp ` C ) ( 2nd ` y ) ) f ) ) ) ) ) |
| 16 |
10 15
|
syl |
|- ( ph -> ( 2nd ` M ) = ( x e. ( ( Base ` C ) X. ( Base ` C ) ) , y e. ( ( Base ` C ) X. ( Base ` C ) ) |-> ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) , g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) |-> ( h e. ( ( Hom ` C ) ` x ) |-> ( ( g ( x ( comp ` C ) ( 2nd ` y ) ) h ) ( <. ( 1st ` y ) , ( 1st ` x ) >. ( comp ` C ) ( 2nd ` y ) ) f ) ) ) ) ) |
| 17 |
16
|
opeq2d |
|- ( ph -> <. ( Homf ` C ) , ( 2nd ` M ) >. = <. ( Homf ` C ) , ( x e. ( ( Base ` C ) X. ( Base ` C ) ) , y e. ( ( Base ` C ) X. ( Base ` C ) ) |-> ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) , g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) |-> ( h e. ( ( Hom ` C ) ` x ) |-> ( ( g ( x ( comp ` C ) ( 2nd ` y ) ) h ) ( <. ( 1st ` y ) , ( 1st ` x ) >. ( comp ` C ) ( 2nd ` y ) ) f ) ) ) ) >. ) |
| 18 |
10 17
|
eqtr4d |
|- ( ph -> M = <. ( Homf ` C ) , ( 2nd ` M ) >. ) |
| 19 |
|
eqid |
|- ( O Xc. C ) = ( O Xc. C ) |
| 20 |
2 7
|
oppcbas |
|- ( Base ` C ) = ( Base ` O ) |
| 21 |
19 20 7
|
xpcbas |
|- ( ( Base ` C ) X. ( Base ` C ) ) = ( Base ` ( O Xc. C ) ) |
| 22 |
|
eqid |
|- ( Base ` D ) = ( Base ` D ) |
| 23 |
|
eqid |
|- ( Hom ` ( O Xc. C ) ) = ( Hom ` ( O Xc. C ) ) |
| 24 |
|
eqid |
|- ( Hom ` D ) = ( Hom ` D ) |
| 25 |
|
eqid |
|- ( Id ` ( O Xc. C ) ) = ( Id ` ( O Xc. C ) ) |
| 26 |
|
eqid |
|- ( Id ` D ) = ( Id ` D ) |
| 27 |
|
eqid |
|- ( comp ` ( O Xc. C ) ) = ( comp ` ( O Xc. C ) ) |
| 28 |
|
eqid |
|- ( comp ` D ) = ( comp ` D ) |
| 29 |
2
|
oppccat |
|- ( C e. Cat -> O e. Cat ) |
| 30 |
4 29
|
syl |
|- ( ph -> O e. Cat ) |
| 31 |
19 30 4
|
xpccat |
|- ( ph -> ( O Xc. C ) e. Cat ) |
| 32 |
3
|
setccat |
|- ( U e. V -> D e. Cat ) |
| 33 |
5 32
|
syl |
|- ( ph -> D e. Cat ) |
| 34 |
|
eqid |
|- ( Homf ` C ) = ( Homf ` C ) |
| 35 |
34 7
|
homffn |
|- ( Homf ` C ) Fn ( ( Base ` C ) X. ( Base ` C ) ) |
| 36 |
35
|
a1i |
|- ( ph -> ( Homf ` C ) Fn ( ( Base ` C ) X. ( Base ` C ) ) ) |
| 37 |
|
df-f |
|- ( ( Homf ` C ) : ( ( Base ` C ) X. ( Base ` C ) ) --> U <-> ( ( Homf ` C ) Fn ( ( Base ` C ) X. ( Base ` C ) ) /\ ran ( Homf ` C ) C_ U ) ) |
| 38 |
36 6 37
|
sylanbrc |
|- ( ph -> ( Homf ` C ) : ( ( Base ` C ) X. ( Base ` C ) ) --> U ) |
| 39 |
3 5
|
setcbas |
|- ( ph -> U = ( Base ` D ) ) |
| 40 |
39
|
feq3d |
|- ( ph -> ( ( Homf ` C ) : ( ( Base ` C ) X. ( Base ` C ) ) --> U <-> ( Homf ` C ) : ( ( Base ` C ) X. ( Base ` C ) ) --> ( Base ` D ) ) ) |
| 41 |
38 40
|
mpbid |
|- ( ph -> ( Homf ` C ) : ( ( Base ` C ) X. ( Base ` C ) ) --> ( Base ` D ) ) |
| 42 |
|
eqid |
|- ( x e. ( ( Base ` C ) X. ( Base ` C ) ) , y e. ( ( Base ` C ) X. ( Base ` C ) ) |-> ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) , g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) |-> ( h e. ( ( Hom ` C ) ` x ) |-> ( ( g ( x ( comp ` C ) ( 2nd ` y ) ) h ) ( <. ( 1st ` y ) , ( 1st ` x ) >. ( comp ` C ) ( 2nd ` y ) ) f ) ) ) ) = ( x e. ( ( Base ` C ) X. ( Base ` C ) ) , y e. ( ( Base ` C ) X. ( Base ` C ) ) |-> ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) , g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) |-> ( h e. ( ( Hom ` C ) ` x ) |-> ( ( g ( x ( comp ` C ) ( 2nd ` y ) ) h ) ( <. ( 1st ` y ) , ( 1st ` x ) >. ( comp ` C ) ( 2nd ` y ) ) f ) ) ) ) |
| 43 |
|
ovex |
|- ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) e. _V |
| 44 |
|
ovex |
|- ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) e. _V |
| 45 |
43 44
|
mpoex |
|- ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) , g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) |-> ( h e. ( ( Hom ` C ) ` x ) |-> ( ( g ( x ( comp ` C ) ( 2nd ` y ) ) h ) ( <. ( 1st ` y ) , ( 1st ` x ) >. ( comp ` C ) ( 2nd ` y ) ) f ) ) ) e. _V |
| 46 |
42 45
|
fnmpoi |
|- ( x e. ( ( Base ` C ) X. ( Base ` C ) ) , y e. ( ( Base ` C ) X. ( Base ` C ) ) |-> ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) , g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) |-> ( h e. ( ( Hom ` C ) ` x ) |-> ( ( g ( x ( comp ` C ) ( 2nd ` y ) ) h ) ( <. ( 1st ` y ) , ( 1st ` x ) >. ( comp ` C ) ( 2nd ` y ) ) f ) ) ) ) Fn ( ( ( Base ` C ) X. ( Base ` C ) ) X. ( ( Base ` C ) X. ( Base ` C ) ) ) |
| 47 |
16
|
fneq1d |
|- ( ph -> ( ( 2nd ` M ) Fn ( ( ( Base ` C ) X. ( Base ` C ) ) X. ( ( Base ` C ) X. ( Base ` C ) ) ) <-> ( x e. ( ( Base ` C ) X. ( Base ` C ) ) , y e. ( ( Base ` C ) X. ( Base ` C ) ) |-> ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) , g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) |-> ( h e. ( ( Hom ` C ) ` x ) |-> ( ( g ( x ( comp ` C ) ( 2nd ` y ) ) h ) ( <. ( 1st ` y ) , ( 1st ` x ) >. ( comp ` C ) ( 2nd ` y ) ) f ) ) ) ) Fn ( ( ( Base ` C ) X. ( Base ` C ) ) X. ( ( Base ` C ) X. ( Base ` C ) ) ) ) ) |
| 48 |
46 47
|
mpbiri |
|- ( ph -> ( 2nd ` M ) Fn ( ( ( Base ` C ) X. ( Base ` C ) ) X. ( ( Base ` C ) X. ( Base ` C ) ) ) ) |
| 49 |
4
|
ad3antrrr |
|- ( ( ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) /\ ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) /\ g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) /\ h e. ( ( Hom ` C ) ` x ) ) -> C e. Cat ) |
| 50 |
|
simplrr |
|- ( ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) /\ ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) /\ g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) -> y e. ( ( Base ` C ) X. ( Base ` C ) ) ) |
| 51 |
|
xp1st |
|- ( y e. ( ( Base ` C ) X. ( Base ` C ) ) -> ( 1st ` y ) e. ( Base ` C ) ) |
| 52 |
50 51
|
syl |
|- ( ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) /\ ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) /\ g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) -> ( 1st ` y ) e. ( Base ` C ) ) |
| 53 |
52
|
adantr |
|- ( ( ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) /\ ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) /\ g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) /\ h e. ( ( Hom ` C ) ` x ) ) -> ( 1st ` y ) e. ( Base ` C ) ) |
| 54 |
|
simplrl |
|- ( ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) /\ ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) /\ g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) -> x e. ( ( Base ` C ) X. ( Base ` C ) ) ) |
| 55 |
|
xp1st |
|- ( x e. ( ( Base ` C ) X. ( Base ` C ) ) -> ( 1st ` x ) e. ( Base ` C ) ) |
| 56 |
54 55
|
syl |
|- ( ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) /\ ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) /\ g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) -> ( 1st ` x ) e. ( Base ` C ) ) |
| 57 |
56
|
adantr |
|- ( ( ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) /\ ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) /\ g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) /\ h e. ( ( Hom ` C ) ` x ) ) -> ( 1st ` x ) e. ( Base ` C ) ) |
| 58 |
|
xp2nd |
|- ( y e. ( ( Base ` C ) X. ( Base ` C ) ) -> ( 2nd ` y ) e. ( Base ` C ) ) |
| 59 |
50 58
|
syl |
|- ( ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) /\ ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) /\ g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) -> ( 2nd ` y ) e. ( Base ` C ) ) |
| 60 |
59
|
adantr |
|- ( ( ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) /\ ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) /\ g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) /\ h e. ( ( Hom ` C ) ` x ) ) -> ( 2nd ` y ) e. ( Base ` C ) ) |
| 61 |
|
simplrl |
|- ( ( ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) /\ ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) /\ g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) /\ h e. ( ( Hom ` C ) ` x ) ) -> f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) ) |
| 62 |
|
1st2nd2 |
|- ( x e. ( ( Base ` C ) X. ( Base ` C ) ) -> x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) |
| 63 |
54 62
|
syl |
|- ( ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) /\ ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) /\ g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) -> x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) |
| 64 |
63
|
adantr |
|- ( ( ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) /\ ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) /\ g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) /\ h e. ( ( Hom ` C ) ` x ) ) -> x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) |
| 65 |
64
|
oveq1d |
|- ( ( ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) /\ ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) /\ g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) /\ h e. ( ( Hom ` C ) ` x ) ) -> ( x ( comp ` C ) ( 2nd ` y ) ) = ( <. ( 1st ` x ) , ( 2nd ` x ) >. ( comp ` C ) ( 2nd ` y ) ) ) |
| 66 |
65
|
oveqd |
|- ( ( ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) /\ ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) /\ g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) /\ h e. ( ( Hom ` C ) ` x ) ) -> ( g ( x ( comp ` C ) ( 2nd ` y ) ) h ) = ( g ( <. ( 1st ` x ) , ( 2nd ` x ) >. ( comp ` C ) ( 2nd ` y ) ) h ) ) |
| 67 |
|
xp2nd |
|- ( x e. ( ( Base ` C ) X. ( Base ` C ) ) -> ( 2nd ` x ) e. ( Base ` C ) ) |
| 68 |
54 67
|
syl |
|- ( ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) /\ ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) /\ g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) -> ( 2nd ` x ) e. ( Base ` C ) ) |
| 69 |
68
|
adantr |
|- ( ( ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) /\ ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) /\ g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) /\ h e. ( ( Hom ` C ) ` x ) ) -> ( 2nd ` x ) e. ( Base ` C ) ) |
| 70 |
63
|
fveq2d |
|- ( ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) /\ ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) /\ g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) -> ( ( Hom ` C ) ` x ) = ( ( Hom ` C ) ` <. ( 1st ` x ) , ( 2nd ` x ) >. ) ) |
| 71 |
|
df-ov |
|- ( ( 1st ` x ) ( Hom ` C ) ( 2nd ` x ) ) = ( ( Hom ` C ) ` <. ( 1st ` x ) , ( 2nd ` x ) >. ) |
| 72 |
70 71
|
eqtr4di |
|- ( ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) /\ ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) /\ g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) -> ( ( Hom ` C ) ` x ) = ( ( 1st ` x ) ( Hom ` C ) ( 2nd ` x ) ) ) |
| 73 |
72
|
eleq2d |
|- ( ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) /\ ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) /\ g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) -> ( h e. ( ( Hom ` C ) ` x ) <-> h e. ( ( 1st ` x ) ( Hom ` C ) ( 2nd ` x ) ) ) ) |
| 74 |
73
|
biimpa |
|- ( ( ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) /\ ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) /\ g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) /\ h e. ( ( Hom ` C ) ` x ) ) -> h e. ( ( 1st ` x ) ( Hom ` C ) ( 2nd ` x ) ) ) |
| 75 |
|
simplrr |
|- ( ( ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) /\ ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) /\ g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) /\ h e. ( ( Hom ` C ) ` x ) ) -> g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) |
| 76 |
7 8 9 49 57 69 60 74 75
|
catcocl |
|- ( ( ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) /\ ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) /\ g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) /\ h e. ( ( Hom ` C ) ` x ) ) -> ( g ( <. ( 1st ` x ) , ( 2nd ` x ) >. ( comp ` C ) ( 2nd ` y ) ) h ) e. ( ( 1st ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) |
| 77 |
66 76
|
eqeltrd |
|- ( ( ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) /\ ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) /\ g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) /\ h e. ( ( Hom ` C ) ` x ) ) -> ( g ( x ( comp ` C ) ( 2nd ` y ) ) h ) e. ( ( 1st ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) |
| 78 |
7 8 9 49 53 57 60 61 77
|
catcocl |
|- ( ( ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) /\ ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) /\ g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) /\ h e. ( ( Hom ` C ) ` x ) ) -> ( ( g ( x ( comp ` C ) ( 2nd ` y ) ) h ) ( <. ( 1st ` y ) , ( 1st ` x ) >. ( comp ` C ) ( 2nd ` y ) ) f ) e. ( ( 1st ` y ) ( Hom ` C ) ( 2nd ` y ) ) ) |
| 79 |
|
1st2nd2 |
|- ( y e. ( ( Base ` C ) X. ( Base ` C ) ) -> y = <. ( 1st ` y ) , ( 2nd ` y ) >. ) |
| 80 |
50 79
|
syl |
|- ( ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) /\ ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) /\ g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) -> y = <. ( 1st ` y ) , ( 2nd ` y ) >. ) |
| 81 |
80
|
fveq2d |
|- ( ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) /\ ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) /\ g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) -> ( ( Hom ` C ) ` y ) = ( ( Hom ` C ) ` <. ( 1st ` y ) , ( 2nd ` y ) >. ) ) |
| 82 |
|
df-ov |
|- ( ( 1st ` y ) ( Hom ` C ) ( 2nd ` y ) ) = ( ( Hom ` C ) ` <. ( 1st ` y ) , ( 2nd ` y ) >. ) |
| 83 |
81 82
|
eqtr4di |
|- ( ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) /\ ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) /\ g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) -> ( ( Hom ` C ) ` y ) = ( ( 1st ` y ) ( Hom ` C ) ( 2nd ` y ) ) ) |
| 84 |
83
|
adantr |
|- ( ( ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) /\ ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) /\ g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) /\ h e. ( ( Hom ` C ) ` x ) ) -> ( ( Hom ` C ) ` y ) = ( ( 1st ` y ) ( Hom ` C ) ( 2nd ` y ) ) ) |
| 85 |
78 84
|
eleqtrrd |
|- ( ( ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) /\ ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) /\ g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) /\ h e. ( ( Hom ` C ) ` x ) ) -> ( ( g ( x ( comp ` C ) ( 2nd ` y ) ) h ) ( <. ( 1st ` y ) , ( 1st ` x ) >. ( comp ` C ) ( 2nd ` y ) ) f ) e. ( ( Hom ` C ) ` y ) ) |
| 86 |
85
|
fmpttd |
|- ( ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) /\ ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) /\ g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) -> ( h e. ( ( Hom ` C ) ` x ) |-> ( ( g ( x ( comp ` C ) ( 2nd ` y ) ) h ) ( <. ( 1st ` y ) , ( 1st ` x ) >. ( comp ` C ) ( 2nd ` y ) ) f ) ) : ( ( Hom ` C ) ` x ) --> ( ( Hom ` C ) ` y ) ) |
| 87 |
5
|
ad2antrr |
|- ( ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) /\ ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) /\ g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) -> U e. V ) |
| 88 |
34 7 8 56 68
|
homfval |
|- ( ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) /\ ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) /\ g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) -> ( ( 1st ` x ) ( Homf ` C ) ( 2nd ` x ) ) = ( ( 1st ` x ) ( Hom ` C ) ( 2nd ` x ) ) ) |
| 89 |
63
|
fveq2d |
|- ( ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) /\ ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) /\ g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) -> ( ( Homf ` C ) ` x ) = ( ( Homf ` C ) ` <. ( 1st ` x ) , ( 2nd ` x ) >. ) ) |
| 90 |
|
df-ov |
|- ( ( 1st ` x ) ( Homf ` C ) ( 2nd ` x ) ) = ( ( Homf ` C ) ` <. ( 1st ` x ) , ( 2nd ` x ) >. ) |
| 91 |
89 90
|
eqtr4di |
|- ( ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) /\ ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) /\ g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) -> ( ( Homf ` C ) ` x ) = ( ( 1st ` x ) ( Homf ` C ) ( 2nd ` x ) ) ) |
| 92 |
88 91 72
|
3eqtr4d |
|- ( ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) /\ ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) /\ g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) -> ( ( Homf ` C ) ` x ) = ( ( Hom ` C ) ` x ) ) |
| 93 |
38
|
ad2antrr |
|- ( ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) /\ ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) /\ g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) -> ( Homf ` C ) : ( ( Base ` C ) X. ( Base ` C ) ) --> U ) |
| 94 |
93 54
|
ffvelcdmd |
|- ( ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) /\ ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) /\ g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) -> ( ( Homf ` C ) ` x ) e. U ) |
| 95 |
92 94
|
eqeltrrd |
|- ( ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) /\ ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) /\ g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) -> ( ( Hom ` C ) ` x ) e. U ) |
| 96 |
34 7 8 52 59
|
homfval |
|- ( ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) /\ ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) /\ g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) -> ( ( 1st ` y ) ( Homf ` C ) ( 2nd ` y ) ) = ( ( 1st ` y ) ( Hom ` C ) ( 2nd ` y ) ) ) |
| 97 |
80
|
fveq2d |
|- ( ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) /\ ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) /\ g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) -> ( ( Homf ` C ) ` y ) = ( ( Homf ` C ) ` <. ( 1st ` y ) , ( 2nd ` y ) >. ) ) |
| 98 |
|
df-ov |
|- ( ( 1st ` y ) ( Homf ` C ) ( 2nd ` y ) ) = ( ( Homf ` C ) ` <. ( 1st ` y ) , ( 2nd ` y ) >. ) |
| 99 |
97 98
|
eqtr4di |
|- ( ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) /\ ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) /\ g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) -> ( ( Homf ` C ) ` y ) = ( ( 1st ` y ) ( Homf ` C ) ( 2nd ` y ) ) ) |
| 100 |
96 99 83
|
3eqtr4d |
|- ( ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) /\ ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) /\ g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) -> ( ( Homf ` C ) ` y ) = ( ( Hom ` C ) ` y ) ) |
| 101 |
93 50
|
ffvelcdmd |
|- ( ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) /\ ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) /\ g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) -> ( ( Homf ` C ) ` y ) e. U ) |
| 102 |
100 101
|
eqeltrrd |
|- ( ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) /\ ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) /\ g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) -> ( ( Hom ` C ) ` y ) e. U ) |
| 103 |
3 87 24 95 102
|
elsetchom |
|- ( ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) /\ ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) /\ g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) -> ( ( h e. ( ( Hom ` C ) ` x ) |-> ( ( g ( x ( comp ` C ) ( 2nd ` y ) ) h ) ( <. ( 1st ` y ) , ( 1st ` x ) >. ( comp ` C ) ( 2nd ` y ) ) f ) ) e. ( ( ( Hom ` C ) ` x ) ( Hom ` D ) ( ( Hom ` C ) ` y ) ) <-> ( h e. ( ( Hom ` C ) ` x ) |-> ( ( g ( x ( comp ` C ) ( 2nd ` y ) ) h ) ( <. ( 1st ` y ) , ( 1st ` x ) >. ( comp ` C ) ( 2nd ` y ) ) f ) ) : ( ( Hom ` C ) ` x ) --> ( ( Hom ` C ) ` y ) ) ) |
| 104 |
86 103
|
mpbird |
|- ( ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) /\ ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) /\ g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) -> ( h e. ( ( Hom ` C ) ` x ) |-> ( ( g ( x ( comp ` C ) ( 2nd ` y ) ) h ) ( <. ( 1st ` y ) , ( 1st ` x ) >. ( comp ` C ) ( 2nd ` y ) ) f ) ) e. ( ( ( Hom ` C ) ` x ) ( Hom ` D ) ( ( Hom ` C ) ` y ) ) ) |
| 105 |
92 100
|
oveq12d |
|- ( ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) /\ ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) /\ g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) -> ( ( ( Homf ` C ) ` x ) ( Hom ` D ) ( ( Homf ` C ) ` y ) ) = ( ( ( Hom ` C ) ` x ) ( Hom ` D ) ( ( Hom ` C ) ` y ) ) ) |
| 106 |
104 105
|
eleqtrrd |
|- ( ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) /\ ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) /\ g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) -> ( h e. ( ( Hom ` C ) ` x ) |-> ( ( g ( x ( comp ` C ) ( 2nd ` y ) ) h ) ( <. ( 1st ` y ) , ( 1st ` x ) >. ( comp ` C ) ( 2nd ` y ) ) f ) ) e. ( ( ( Homf ` C ) ` x ) ( Hom ` D ) ( ( Homf ` C ) ` y ) ) ) |
| 107 |
106
|
ralrimivva |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) -> A. f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) A. g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ( h e. ( ( Hom ` C ) ` x ) |-> ( ( g ( x ( comp ` C ) ( 2nd ` y ) ) h ) ( <. ( 1st ` y ) , ( 1st ` x ) >. ( comp ` C ) ( 2nd ` y ) ) f ) ) e. ( ( ( Homf ` C ) ` x ) ( Hom ` D ) ( ( Homf ` C ) ` y ) ) ) |
| 108 |
|
eqid |
|- ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) , g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) |-> ( h e. ( ( Hom ` C ) ` x ) |-> ( ( g ( x ( comp ` C ) ( 2nd ` y ) ) h ) ( <. ( 1st ` y ) , ( 1st ` x ) >. ( comp ` C ) ( 2nd ` y ) ) f ) ) ) = ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) , g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) |-> ( h e. ( ( Hom ` C ) ` x ) |-> ( ( g ( x ( comp ` C ) ( 2nd ` y ) ) h ) ( <. ( 1st ` y ) , ( 1st ` x ) >. ( comp ` C ) ( 2nd ` y ) ) f ) ) ) |
| 109 |
108
|
fmpo |
|- ( A. f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) A. g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ( h e. ( ( Hom ` C ) ` x ) |-> ( ( g ( x ( comp ` C ) ( 2nd ` y ) ) h ) ( <. ( 1st ` y ) , ( 1st ` x ) >. ( comp ` C ) ( 2nd ` y ) ) f ) ) e. ( ( ( Homf ` C ) ` x ) ( Hom ` D ) ( ( Homf ` C ) ` y ) ) <-> ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) , g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) |-> ( h e. ( ( Hom ` C ) ` x ) |-> ( ( g ( x ( comp ` C ) ( 2nd ` y ) ) h ) ( <. ( 1st ` y ) , ( 1st ` x ) >. ( comp ` C ) ( 2nd ` y ) ) f ) ) ) : ( ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) X. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) --> ( ( ( Homf ` C ) ` x ) ( Hom ` D ) ( ( Homf ` C ) ` y ) ) ) |
| 110 |
107 109
|
sylib |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) -> ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) , g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) |-> ( h e. ( ( Hom ` C ) ` x ) |-> ( ( g ( x ( comp ` C ) ( 2nd ` y ) ) h ) ( <. ( 1st ` y ) , ( 1st ` x ) >. ( comp ` C ) ( 2nd ` y ) ) f ) ) ) : ( ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) X. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) --> ( ( ( Homf ` C ) ` x ) ( Hom ` D ) ( ( Homf ` C ) ` y ) ) ) |
| 111 |
16
|
oveqd |
|- ( ph -> ( x ( 2nd ` M ) y ) = ( x ( x e. ( ( Base ` C ) X. ( Base ` C ) ) , y e. ( ( Base ` C ) X. ( Base ` C ) ) |-> ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) , g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) |-> ( h e. ( ( Hom ` C ) ` x ) |-> ( ( g ( x ( comp ` C ) ( 2nd ` y ) ) h ) ( <. ( 1st ` y ) , ( 1st ` x ) >. ( comp ` C ) ( 2nd ` y ) ) f ) ) ) ) y ) ) |
| 112 |
42
|
ovmpt4g |
|- ( ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) , g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) |-> ( h e. ( ( Hom ` C ) ` x ) |-> ( ( g ( x ( comp ` C ) ( 2nd ` y ) ) h ) ( <. ( 1st ` y ) , ( 1st ` x ) >. ( comp ` C ) ( 2nd ` y ) ) f ) ) ) e. _V ) -> ( x ( x e. ( ( Base ` C ) X. ( Base ` C ) ) , y e. ( ( Base ` C ) X. ( Base ` C ) ) |-> ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) , g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) |-> ( h e. ( ( Hom ` C ) ` x ) |-> ( ( g ( x ( comp ` C ) ( 2nd ` y ) ) h ) ( <. ( 1st ` y ) , ( 1st ` x ) >. ( comp ` C ) ( 2nd ` y ) ) f ) ) ) ) y ) = ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) , g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) |-> ( h e. ( ( Hom ` C ) ` x ) |-> ( ( g ( x ( comp ` C ) ( 2nd ` y ) ) h ) ( <. ( 1st ` y ) , ( 1st ` x ) >. ( comp ` C ) ( 2nd ` y ) ) f ) ) ) ) |
| 113 |
45 112
|
mp3an3 |
|- ( ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) -> ( x ( x e. ( ( Base ` C ) X. ( Base ` C ) ) , y e. ( ( Base ` C ) X. ( Base ` C ) ) |-> ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) , g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) |-> ( h e. ( ( Hom ` C ) ` x ) |-> ( ( g ( x ( comp ` C ) ( 2nd ` y ) ) h ) ( <. ( 1st ` y ) , ( 1st ` x ) >. ( comp ` C ) ( 2nd ` y ) ) f ) ) ) ) y ) = ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) , g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) |-> ( h e. ( ( Hom ` C ) ` x ) |-> ( ( g ( x ( comp ` C ) ( 2nd ` y ) ) h ) ( <. ( 1st ` y ) , ( 1st ` x ) >. ( comp ` C ) ( 2nd ` y ) ) f ) ) ) ) |
| 114 |
111 113
|
sylan9eq |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) -> ( x ( 2nd ` M ) y ) = ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) , g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) |-> ( h e. ( ( Hom ` C ) ` x ) |-> ( ( g ( x ( comp ` C ) ( 2nd ` y ) ) h ) ( <. ( 1st ` y ) , ( 1st ` x ) >. ( comp ` C ) ( 2nd ` y ) ) f ) ) ) ) |
| 115 |
|
eqid |
|- ( Hom ` O ) = ( Hom ` O ) |
| 116 |
|
simprl |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) -> x e. ( ( Base ` C ) X. ( Base ` C ) ) ) |
| 117 |
|
simprr |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) -> y e. ( ( Base ` C ) X. ( Base ` C ) ) ) |
| 118 |
19 21 115 8 23 116 117
|
xpchom |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) -> ( x ( Hom ` ( O Xc. C ) ) y ) = ( ( ( 1st ` x ) ( Hom ` O ) ( 1st ` y ) ) X. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) |
| 119 |
8 2
|
oppchom |
|- ( ( 1st ` x ) ( Hom ` O ) ( 1st ` y ) ) = ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) |
| 120 |
119
|
xpeq1i |
|- ( ( ( 1st ` x ) ( Hom ` O ) ( 1st ` y ) ) X. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) = ( ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) X. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) |
| 121 |
118 120
|
eqtrdi |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) -> ( x ( Hom ` ( O Xc. C ) ) y ) = ( ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) X. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) |
| 122 |
114 121
|
feq12d |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) -> ( ( x ( 2nd ` M ) y ) : ( x ( Hom ` ( O Xc. C ) ) y ) --> ( ( ( Homf ` C ) ` x ) ( Hom ` D ) ( ( Homf ` C ) ` y ) ) <-> ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) , g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) |-> ( h e. ( ( Hom ` C ) ` x ) |-> ( ( g ( x ( comp ` C ) ( 2nd ` y ) ) h ) ( <. ( 1st ` y ) , ( 1st ` x ) >. ( comp ` C ) ( 2nd ` y ) ) f ) ) ) : ( ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) X. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) --> ( ( ( Homf ` C ) ` x ) ( Hom ` D ) ( ( Homf ` C ) ` y ) ) ) ) |
| 123 |
110 122
|
mpbird |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) -> ( x ( 2nd ` M ) y ) : ( x ( Hom ` ( O Xc. C ) ) y ) --> ( ( ( Homf ` C ) ` x ) ( Hom ` D ) ( ( Homf ` C ) ` y ) ) ) |
| 124 |
|
eqid |
|- ( Id ` C ) = ( Id ` C ) |
| 125 |
4
|
ad2antrr |
|- ( ( ( ph /\ x e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ f e. ( ( 1st ` x ) ( Hom ` C ) ( 2nd ` x ) ) ) -> C e. Cat ) |
| 126 |
55
|
adantl |
|- ( ( ph /\ x e. ( ( Base ` C ) X. ( Base ` C ) ) ) -> ( 1st ` x ) e. ( Base ` C ) ) |
| 127 |
126
|
adantr |
|- ( ( ( ph /\ x e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ f e. ( ( 1st ` x ) ( Hom ` C ) ( 2nd ` x ) ) ) -> ( 1st ` x ) e. ( Base ` C ) ) |
| 128 |
67
|
adantl |
|- ( ( ph /\ x e. ( ( Base ` C ) X. ( Base ` C ) ) ) -> ( 2nd ` x ) e. ( Base ` C ) ) |
| 129 |
128
|
adantr |
|- ( ( ( ph /\ x e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ f e. ( ( 1st ` x ) ( Hom ` C ) ( 2nd ` x ) ) ) -> ( 2nd ` x ) e. ( Base ` C ) ) |
| 130 |
|
simpr |
|- ( ( ( ph /\ x e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ f e. ( ( 1st ` x ) ( Hom ` C ) ( 2nd ` x ) ) ) -> f e. ( ( 1st ` x ) ( Hom ` C ) ( 2nd ` x ) ) ) |
| 131 |
7 8 124 125 127 9 129 130
|
catlid |
|- ( ( ( ph /\ x e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ f e. ( ( 1st ` x ) ( Hom ` C ) ( 2nd ` x ) ) ) -> ( ( ( Id ` C ) ` ( 2nd ` x ) ) ( <. ( 1st ` x ) , ( 2nd ` x ) >. ( comp ` C ) ( 2nd ` x ) ) f ) = f ) |
| 132 |
131
|
oveq1d |
|- ( ( ( ph /\ x e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ f e. ( ( 1st ` x ) ( Hom ` C ) ( 2nd ` x ) ) ) -> ( ( ( ( Id ` C ) ` ( 2nd ` x ) ) ( <. ( 1st ` x ) , ( 2nd ` x ) >. ( comp ` C ) ( 2nd ` x ) ) f ) ( <. ( 1st ` x ) , ( 1st ` x ) >. ( comp ` C ) ( 2nd ` x ) ) ( ( Id ` C ) ` ( 1st ` x ) ) ) = ( f ( <. ( 1st ` x ) , ( 1st ` x ) >. ( comp ` C ) ( 2nd ` x ) ) ( ( Id ` C ) ` ( 1st ` x ) ) ) ) |
| 133 |
7 8 124 125 127 9 129 130
|
catrid |
|- ( ( ( ph /\ x e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ f e. ( ( 1st ` x ) ( Hom ` C ) ( 2nd ` x ) ) ) -> ( f ( <. ( 1st ` x ) , ( 1st ` x ) >. ( comp ` C ) ( 2nd ` x ) ) ( ( Id ` C ) ` ( 1st ` x ) ) ) = f ) |
| 134 |
132 133
|
eqtrd |
|- ( ( ( ph /\ x e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ f e. ( ( 1st ` x ) ( Hom ` C ) ( 2nd ` x ) ) ) -> ( ( ( ( Id ` C ) ` ( 2nd ` x ) ) ( <. ( 1st ` x ) , ( 2nd ` x ) >. ( comp ` C ) ( 2nd ` x ) ) f ) ( <. ( 1st ` x ) , ( 1st ` x ) >. ( comp ` C ) ( 2nd ` x ) ) ( ( Id ` C ) ` ( 1st ` x ) ) ) = f ) |
| 135 |
134
|
mpteq2dva |
|- ( ( ph /\ x e. ( ( Base ` C ) X. ( Base ` C ) ) ) -> ( f e. ( ( 1st ` x ) ( Hom ` C ) ( 2nd ` x ) ) |-> ( ( ( ( Id ` C ) ` ( 2nd ` x ) ) ( <. ( 1st ` x ) , ( 2nd ` x ) >. ( comp ` C ) ( 2nd ` x ) ) f ) ( <. ( 1st ` x ) , ( 1st ` x ) >. ( comp ` C ) ( 2nd ` x ) ) ( ( Id ` C ) ` ( 1st ` x ) ) ) ) = ( f e. ( ( 1st ` x ) ( Hom ` C ) ( 2nd ` x ) ) |-> f ) ) |
| 136 |
|
df-ov |
|- ( ( ( Id ` C ) ` ( 1st ` x ) ) ( <. ( 1st ` x ) , ( 2nd ` x ) >. ( 2nd ` M ) <. ( 1st ` x ) , ( 2nd ` x ) >. ) ( ( Id ` C ) ` ( 2nd ` x ) ) ) = ( ( <. ( 1st ` x ) , ( 2nd ` x ) >. ( 2nd ` M ) <. ( 1st ` x ) , ( 2nd ` x ) >. ) ` <. ( ( Id ` C ) ` ( 1st ` x ) ) , ( ( Id ` C ) ` ( 2nd ` x ) ) >. ) |
| 137 |
4
|
adantr |
|- ( ( ph /\ x e. ( ( Base ` C ) X. ( Base ` C ) ) ) -> C e. Cat ) |
| 138 |
7 8 124 137 126
|
catidcl |
|- ( ( ph /\ x e. ( ( Base ` C ) X. ( Base ` C ) ) ) -> ( ( Id ` C ) ` ( 1st ` x ) ) e. ( ( 1st ` x ) ( Hom ` C ) ( 1st ` x ) ) ) |
| 139 |
7 8 124 137 128
|
catidcl |
|- ( ( ph /\ x e. ( ( Base ` C ) X. ( Base ` C ) ) ) -> ( ( Id ` C ) ` ( 2nd ` x ) ) e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` x ) ) ) |
| 140 |
1 137 7 8 126 128 126 128 9 138 139
|
hof2val |
|- ( ( ph /\ x e. ( ( Base ` C ) X. ( Base ` C ) ) ) -> ( ( ( Id ` C ) ` ( 1st ` x ) ) ( <. ( 1st ` x ) , ( 2nd ` x ) >. ( 2nd ` M ) <. ( 1st ` x ) , ( 2nd ` x ) >. ) ( ( Id ` C ) ` ( 2nd ` x ) ) ) = ( f e. ( ( 1st ` x ) ( Hom ` C ) ( 2nd ` x ) ) |-> ( ( ( ( Id ` C ) ` ( 2nd ` x ) ) ( <. ( 1st ` x ) , ( 2nd ` x ) >. ( comp ` C ) ( 2nd ` x ) ) f ) ( <. ( 1st ` x ) , ( 1st ` x ) >. ( comp ` C ) ( 2nd ` x ) ) ( ( Id ` C ) ` ( 1st ` x ) ) ) ) ) |
| 141 |
136 140
|
eqtr3id |
|- ( ( ph /\ x e. ( ( Base ` C ) X. ( Base ` C ) ) ) -> ( ( <. ( 1st ` x ) , ( 2nd ` x ) >. ( 2nd ` M ) <. ( 1st ` x ) , ( 2nd ` x ) >. ) ` <. ( ( Id ` C ) ` ( 1st ` x ) ) , ( ( Id ` C ) ` ( 2nd ` x ) ) >. ) = ( f e. ( ( 1st ` x ) ( Hom ` C ) ( 2nd ` x ) ) |-> ( ( ( ( Id ` C ) ` ( 2nd ` x ) ) ( <. ( 1st ` x ) , ( 2nd ` x ) >. ( comp ` C ) ( 2nd ` x ) ) f ) ( <. ( 1st ` x ) , ( 1st ` x ) >. ( comp ` C ) ( 2nd ` x ) ) ( ( Id ` C ) ` ( 1st ` x ) ) ) ) ) |
| 142 |
62
|
adantl |
|- ( ( ph /\ x e. ( ( Base ` C ) X. ( Base ` C ) ) ) -> x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) |
| 143 |
142
|
fveq2d |
|- ( ( ph /\ x e. ( ( Base ` C ) X. ( Base ` C ) ) ) -> ( ( Homf ` C ) ` x ) = ( ( Homf ` C ) ` <. ( 1st ` x ) , ( 2nd ` x ) >. ) ) |
| 144 |
143 90
|
eqtr4di |
|- ( ( ph /\ x e. ( ( Base ` C ) X. ( Base ` C ) ) ) -> ( ( Homf ` C ) ` x ) = ( ( 1st ` x ) ( Homf ` C ) ( 2nd ` x ) ) ) |
| 145 |
34 7 8 126 128
|
homfval |
|- ( ( ph /\ x e. ( ( Base ` C ) X. ( Base ` C ) ) ) -> ( ( 1st ` x ) ( Homf ` C ) ( 2nd ` x ) ) = ( ( 1st ` x ) ( Hom ` C ) ( 2nd ` x ) ) ) |
| 146 |
144 145
|
eqtrd |
|- ( ( ph /\ x e. ( ( Base ` C ) X. ( Base ` C ) ) ) -> ( ( Homf ` C ) ` x ) = ( ( 1st ` x ) ( Hom ` C ) ( 2nd ` x ) ) ) |
| 147 |
146
|
reseq2d |
|- ( ( ph /\ x e. ( ( Base ` C ) X. ( Base ` C ) ) ) -> ( _I |` ( ( Homf ` C ) ` x ) ) = ( _I |` ( ( 1st ` x ) ( Hom ` C ) ( 2nd ` x ) ) ) ) |
| 148 |
|
mptresid |
|- ( _I |` ( ( 1st ` x ) ( Hom ` C ) ( 2nd ` x ) ) ) = ( f e. ( ( 1st ` x ) ( Hom ` C ) ( 2nd ` x ) ) |-> f ) |
| 149 |
147 148
|
eqtrdi |
|- ( ( ph /\ x e. ( ( Base ` C ) X. ( Base ` C ) ) ) -> ( _I |` ( ( Homf ` C ) ` x ) ) = ( f e. ( ( 1st ` x ) ( Hom ` C ) ( 2nd ` x ) ) |-> f ) ) |
| 150 |
135 141 149
|
3eqtr4d |
|- ( ( ph /\ x e. ( ( Base ` C ) X. ( Base ` C ) ) ) -> ( ( <. ( 1st ` x ) , ( 2nd ` x ) >. ( 2nd ` M ) <. ( 1st ` x ) , ( 2nd ` x ) >. ) ` <. ( ( Id ` C ) ` ( 1st ` x ) ) , ( ( Id ` C ) ` ( 2nd ` x ) ) >. ) = ( _I |` ( ( Homf ` C ) ` x ) ) ) |
| 151 |
142 142
|
oveq12d |
|- ( ( ph /\ x e. ( ( Base ` C ) X. ( Base ` C ) ) ) -> ( x ( 2nd ` M ) x ) = ( <. ( 1st ` x ) , ( 2nd ` x ) >. ( 2nd ` M ) <. ( 1st ` x ) , ( 2nd ` x ) >. ) ) |
| 152 |
142
|
fveq2d |
|- ( ( ph /\ x e. ( ( Base ` C ) X. ( Base ` C ) ) ) -> ( ( Id ` ( O Xc. C ) ) ` x ) = ( ( Id ` ( O Xc. C ) ) ` <. ( 1st ` x ) , ( 2nd ` x ) >. ) ) |
| 153 |
30
|
adantr |
|- ( ( ph /\ x e. ( ( Base ` C ) X. ( Base ` C ) ) ) -> O e. Cat ) |
| 154 |
|
eqid |
|- ( Id ` O ) = ( Id ` O ) |
| 155 |
19 153 137 20 7 154 124 25 126 128
|
xpcid |
|- ( ( ph /\ x e. ( ( Base ` C ) X. ( Base ` C ) ) ) -> ( ( Id ` ( O Xc. C ) ) ` <. ( 1st ` x ) , ( 2nd ` x ) >. ) = <. ( ( Id ` O ) ` ( 1st ` x ) ) , ( ( Id ` C ) ` ( 2nd ` x ) ) >. ) |
| 156 |
2 124
|
oppcid |
|- ( C e. Cat -> ( Id ` O ) = ( Id ` C ) ) |
| 157 |
137 156
|
syl |
|- ( ( ph /\ x e. ( ( Base ` C ) X. ( Base ` C ) ) ) -> ( Id ` O ) = ( Id ` C ) ) |
| 158 |
157
|
fveq1d |
|- ( ( ph /\ x e. ( ( Base ` C ) X. ( Base ` C ) ) ) -> ( ( Id ` O ) ` ( 1st ` x ) ) = ( ( Id ` C ) ` ( 1st ` x ) ) ) |
| 159 |
158
|
opeq1d |
|- ( ( ph /\ x e. ( ( Base ` C ) X. ( Base ` C ) ) ) -> <. ( ( Id ` O ) ` ( 1st ` x ) ) , ( ( Id ` C ) ` ( 2nd ` x ) ) >. = <. ( ( Id ` C ) ` ( 1st ` x ) ) , ( ( Id ` C ) ` ( 2nd ` x ) ) >. ) |
| 160 |
152 155 159
|
3eqtrd |
|- ( ( ph /\ x e. ( ( Base ` C ) X. ( Base ` C ) ) ) -> ( ( Id ` ( O Xc. C ) ) ` x ) = <. ( ( Id ` C ) ` ( 1st ` x ) ) , ( ( Id ` C ) ` ( 2nd ` x ) ) >. ) |
| 161 |
151 160
|
fveq12d |
|- ( ( ph /\ x e. ( ( Base ` C ) X. ( Base ` C ) ) ) -> ( ( x ( 2nd ` M ) x ) ` ( ( Id ` ( O Xc. C ) ) ` x ) ) = ( ( <. ( 1st ` x ) , ( 2nd ` x ) >. ( 2nd ` M ) <. ( 1st ` x ) , ( 2nd ` x ) >. ) ` <. ( ( Id ` C ) ` ( 1st ` x ) ) , ( ( Id ` C ) ` ( 2nd ` x ) ) >. ) ) |
| 162 |
5
|
adantr |
|- ( ( ph /\ x e. ( ( Base ` C ) X. ( Base ` C ) ) ) -> U e. V ) |
| 163 |
38
|
ffvelcdmda |
|- ( ( ph /\ x e. ( ( Base ` C ) X. ( Base ` C ) ) ) -> ( ( Homf ` C ) ` x ) e. U ) |
| 164 |
3 26 162 163
|
setcid |
|- ( ( ph /\ x e. ( ( Base ` C ) X. ( Base ` C ) ) ) -> ( ( Id ` D ) ` ( ( Homf ` C ) ` x ) ) = ( _I |` ( ( Homf ` C ) ` x ) ) ) |
| 165 |
150 161 164
|
3eqtr4d |
|- ( ( ph /\ x e. ( ( Base ` C ) X. ( Base ` C ) ) ) -> ( ( x ( 2nd ` M ) x ) ` ( ( Id ` ( O Xc. C ) ) ` x ) ) = ( ( Id ` D ) ` ( ( Homf ` C ) ` x ) ) ) |
| 166 |
4
|
3ad2ant1 |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( O Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) ) -> C e. Cat ) |
| 167 |
5
|
3ad2ant1 |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( O Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) ) -> U e. V ) |
| 168 |
6
|
3ad2ant1 |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( O Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) ) -> ran ( Homf ` C ) C_ U ) |
| 169 |
|
simp21 |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( O Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) ) -> x e. ( ( Base ` C ) X. ( Base ` C ) ) ) |
| 170 |
169 55
|
syl |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( O Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) ) -> ( 1st ` x ) e. ( Base ` C ) ) |
| 171 |
169 67
|
syl |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( O Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) ) -> ( 2nd ` x ) e. ( Base ` C ) ) |
| 172 |
|
simp22 |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( O Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) ) -> y e. ( ( Base ` C ) X. ( Base ` C ) ) ) |
| 173 |
172 51
|
syl |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( O Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) ) -> ( 1st ` y ) e. ( Base ` C ) ) |
| 174 |
172 58
|
syl |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( O Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) ) -> ( 2nd ` y ) e. ( Base ` C ) ) |
| 175 |
|
simp23 |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( O Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) ) -> z e. ( ( Base ` C ) X. ( Base ` C ) ) ) |
| 176 |
|
xp1st |
|- ( z e. ( ( Base ` C ) X. ( Base ` C ) ) -> ( 1st ` z ) e. ( Base ` C ) ) |
| 177 |
175 176
|
syl |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( O Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) ) -> ( 1st ` z ) e. ( Base ` C ) ) |
| 178 |
|
xp2nd |
|- ( z e. ( ( Base ` C ) X. ( Base ` C ) ) -> ( 2nd ` z ) e. ( Base ` C ) ) |
| 179 |
175 178
|
syl |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( O Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) ) -> ( 2nd ` z ) e. ( Base ` C ) ) |
| 180 |
|
simp3l |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( O Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) ) -> f e. ( x ( Hom ` ( O Xc. C ) ) y ) ) |
| 181 |
19 21 115 8 23 169 172
|
xpchom |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( O Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) ) -> ( x ( Hom ` ( O Xc. C ) ) y ) = ( ( ( 1st ` x ) ( Hom ` O ) ( 1st ` y ) ) X. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) |
| 182 |
180 181
|
eleqtrd |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( O Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) ) -> f e. ( ( ( 1st ` x ) ( Hom ` O ) ( 1st ` y ) ) X. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) |
| 183 |
|
xp1st |
|- ( f e. ( ( ( 1st ` x ) ( Hom ` O ) ( 1st ` y ) ) X. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) -> ( 1st ` f ) e. ( ( 1st ` x ) ( Hom ` O ) ( 1st ` y ) ) ) |
| 184 |
182 183
|
syl |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( O Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) ) -> ( 1st ` f ) e. ( ( 1st ` x ) ( Hom ` O ) ( 1st ` y ) ) ) |
| 185 |
184 119
|
eleqtrdi |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( O Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) ) -> ( 1st ` f ) e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) ) |
| 186 |
|
xp2nd |
|- ( f e. ( ( ( 1st ` x ) ( Hom ` O ) ( 1st ` y ) ) X. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) -> ( 2nd ` f ) e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) |
| 187 |
182 186
|
syl |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( O Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) ) -> ( 2nd ` f ) e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) |
| 188 |
|
simp3r |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( O Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) ) -> g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) |
| 189 |
19 21 115 8 23 172 175
|
xpchom |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( O Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) ) -> ( y ( Hom ` ( O Xc. C ) ) z ) = ( ( ( 1st ` y ) ( Hom ` O ) ( 1st ` z ) ) X. ( ( 2nd ` y ) ( Hom ` C ) ( 2nd ` z ) ) ) ) |
| 190 |
188 189
|
eleqtrd |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( O Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) ) -> g e. ( ( ( 1st ` y ) ( Hom ` O ) ( 1st ` z ) ) X. ( ( 2nd ` y ) ( Hom ` C ) ( 2nd ` z ) ) ) ) |
| 191 |
|
xp1st |
|- ( g e. ( ( ( 1st ` y ) ( Hom ` O ) ( 1st ` z ) ) X. ( ( 2nd ` y ) ( Hom ` C ) ( 2nd ` z ) ) ) -> ( 1st ` g ) e. ( ( 1st ` y ) ( Hom ` O ) ( 1st ` z ) ) ) |
| 192 |
190 191
|
syl |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( O Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) ) -> ( 1st ` g ) e. ( ( 1st ` y ) ( Hom ` O ) ( 1st ` z ) ) ) |
| 193 |
8 2
|
oppchom |
|- ( ( 1st ` y ) ( Hom ` O ) ( 1st ` z ) ) = ( ( 1st ` z ) ( Hom ` C ) ( 1st ` y ) ) |
| 194 |
192 193
|
eleqtrdi |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( O Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) ) -> ( 1st ` g ) e. ( ( 1st ` z ) ( Hom ` C ) ( 1st ` y ) ) ) |
| 195 |
|
xp2nd |
|- ( g e. ( ( ( 1st ` y ) ( Hom ` O ) ( 1st ` z ) ) X. ( ( 2nd ` y ) ( Hom ` C ) ( 2nd ` z ) ) ) -> ( 2nd ` g ) e. ( ( 2nd ` y ) ( Hom ` C ) ( 2nd ` z ) ) ) |
| 196 |
190 195
|
syl |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( O Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) ) -> ( 2nd ` g ) e. ( ( 2nd ` y ) ( Hom ` C ) ( 2nd ` z ) ) ) |
| 197 |
1 2 3 166 167 168 7 8 170 171 173 174 177 179 185 187 194 196
|
hofcllem |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( O Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) ) -> ( ( ( 1st ` f ) ( <. ( 1st ` z ) , ( 1st ` y ) >. ( comp ` C ) ( 1st ` x ) ) ( 1st ` g ) ) ( <. ( 1st ` x ) , ( 2nd ` x ) >. ( 2nd ` M ) <. ( 1st ` z ) , ( 2nd ` z ) >. ) ( ( 2nd ` g ) ( <. ( 2nd ` x ) , ( 2nd ` y ) >. ( comp ` C ) ( 2nd ` z ) ) ( 2nd ` f ) ) ) = ( ( ( 1st ` g ) ( <. ( 1st ` y ) , ( 2nd ` y ) >. ( 2nd ` M ) <. ( 1st ` z ) , ( 2nd ` z ) >. ) ( 2nd ` g ) ) ( <. ( ( 1st ` x ) ( Hom ` C ) ( 2nd ` x ) ) , ( ( 1st ` y ) ( Hom ` C ) ( 2nd ` y ) ) >. ( comp ` D ) ( ( 1st ` z ) ( Hom ` C ) ( 2nd ` z ) ) ) ( ( 1st ` f ) ( <. ( 1st ` x ) , ( 2nd ` x ) >. ( 2nd ` M ) <. ( 1st ` y ) , ( 2nd ` y ) >. ) ( 2nd ` f ) ) ) ) |
| 198 |
169 62
|
syl |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( O Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) ) -> x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) |
| 199 |
|
1st2nd2 |
|- ( z e. ( ( Base ` C ) X. ( Base ` C ) ) -> z = <. ( 1st ` z ) , ( 2nd ` z ) >. ) |
| 200 |
175 199
|
syl |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( O Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) ) -> z = <. ( 1st ` z ) , ( 2nd ` z ) >. ) |
| 201 |
198 200
|
oveq12d |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( O Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) ) -> ( x ( 2nd ` M ) z ) = ( <. ( 1st ` x ) , ( 2nd ` x ) >. ( 2nd ` M ) <. ( 1st ` z ) , ( 2nd ` z ) >. ) ) |
| 202 |
172 79
|
syl |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( O Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) ) -> y = <. ( 1st ` y ) , ( 2nd ` y ) >. ) |
| 203 |
198 202
|
opeq12d |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( O Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) ) -> <. x , y >. = <. <. ( 1st ` x ) , ( 2nd ` x ) >. , <. ( 1st ` y ) , ( 2nd ` y ) >. >. ) |
| 204 |
203 200
|
oveq12d |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( O Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) ) -> ( <. x , y >. ( comp ` ( O Xc. C ) ) z ) = ( <. <. ( 1st ` x ) , ( 2nd ` x ) >. , <. ( 1st ` y ) , ( 2nd ` y ) >. >. ( comp ` ( O Xc. C ) ) <. ( 1st ` z ) , ( 2nd ` z ) >. ) ) |
| 205 |
|
1st2nd2 |
|- ( g e. ( ( ( 1st ` y ) ( Hom ` O ) ( 1st ` z ) ) X. ( ( 2nd ` y ) ( Hom ` C ) ( 2nd ` z ) ) ) -> g = <. ( 1st ` g ) , ( 2nd ` g ) >. ) |
| 206 |
190 205
|
syl |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( O Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) ) -> g = <. ( 1st ` g ) , ( 2nd ` g ) >. ) |
| 207 |
|
1st2nd2 |
|- ( f e. ( ( ( 1st ` x ) ( Hom ` O ) ( 1st ` y ) ) X. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) -> f = <. ( 1st ` f ) , ( 2nd ` f ) >. ) |
| 208 |
182 207
|
syl |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( O Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) ) -> f = <. ( 1st ` f ) , ( 2nd ` f ) >. ) |
| 209 |
204 206 208
|
oveq123d |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( O Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) ) -> ( g ( <. x , y >. ( comp ` ( O Xc. C ) ) z ) f ) = ( <. ( 1st ` g ) , ( 2nd ` g ) >. ( <. <. ( 1st ` x ) , ( 2nd ` x ) >. , <. ( 1st ` y ) , ( 2nd ` y ) >. >. ( comp ` ( O Xc. C ) ) <. ( 1st ` z ) , ( 2nd ` z ) >. ) <. ( 1st ` f ) , ( 2nd ` f ) >. ) ) |
| 210 |
|
eqid |
|- ( comp ` O ) = ( comp ` O ) |
| 211 |
19 20 7 115 8 170 171 173 174 210 9 27 177 179 184 187 192 196
|
xpcco2 |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( O Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) ) -> ( <. ( 1st ` g ) , ( 2nd ` g ) >. ( <. <. ( 1st ` x ) , ( 2nd ` x ) >. , <. ( 1st ` y ) , ( 2nd ` y ) >. >. ( comp ` ( O Xc. C ) ) <. ( 1st ` z ) , ( 2nd ` z ) >. ) <. ( 1st ` f ) , ( 2nd ` f ) >. ) = <. ( ( 1st ` g ) ( <. ( 1st ` x ) , ( 1st ` y ) >. ( comp ` O ) ( 1st ` z ) ) ( 1st ` f ) ) , ( ( 2nd ` g ) ( <. ( 2nd ` x ) , ( 2nd ` y ) >. ( comp ` C ) ( 2nd ` z ) ) ( 2nd ` f ) ) >. ) |
| 212 |
7 9 2 170 173 177
|
oppcco |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( O Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) ) -> ( ( 1st ` g ) ( <. ( 1st ` x ) , ( 1st ` y ) >. ( comp ` O ) ( 1st ` z ) ) ( 1st ` f ) ) = ( ( 1st ` f ) ( <. ( 1st ` z ) , ( 1st ` y ) >. ( comp ` C ) ( 1st ` x ) ) ( 1st ` g ) ) ) |
| 213 |
212
|
opeq1d |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( O Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) ) -> <. ( ( 1st ` g ) ( <. ( 1st ` x ) , ( 1st ` y ) >. ( comp ` O ) ( 1st ` z ) ) ( 1st ` f ) ) , ( ( 2nd ` g ) ( <. ( 2nd ` x ) , ( 2nd ` y ) >. ( comp ` C ) ( 2nd ` z ) ) ( 2nd ` f ) ) >. = <. ( ( 1st ` f ) ( <. ( 1st ` z ) , ( 1st ` y ) >. ( comp ` C ) ( 1st ` x ) ) ( 1st ` g ) ) , ( ( 2nd ` g ) ( <. ( 2nd ` x ) , ( 2nd ` y ) >. ( comp ` C ) ( 2nd ` z ) ) ( 2nd ` f ) ) >. ) |
| 214 |
209 211 213
|
3eqtrd |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( O Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) ) -> ( g ( <. x , y >. ( comp ` ( O Xc. C ) ) z ) f ) = <. ( ( 1st ` f ) ( <. ( 1st ` z ) , ( 1st ` y ) >. ( comp ` C ) ( 1st ` x ) ) ( 1st ` g ) ) , ( ( 2nd ` g ) ( <. ( 2nd ` x ) , ( 2nd ` y ) >. ( comp ` C ) ( 2nd ` z ) ) ( 2nd ` f ) ) >. ) |
| 215 |
201 214
|
fveq12d |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( O Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) ) -> ( ( x ( 2nd ` M ) z ) ` ( g ( <. x , y >. ( comp ` ( O Xc. C ) ) z ) f ) ) = ( ( <. ( 1st ` x ) , ( 2nd ` x ) >. ( 2nd ` M ) <. ( 1st ` z ) , ( 2nd ` z ) >. ) ` <. ( ( 1st ` f ) ( <. ( 1st ` z ) , ( 1st ` y ) >. ( comp ` C ) ( 1st ` x ) ) ( 1st ` g ) ) , ( ( 2nd ` g ) ( <. ( 2nd ` x ) , ( 2nd ` y ) >. ( comp ` C ) ( 2nd ` z ) ) ( 2nd ` f ) ) >. ) ) |
| 216 |
|
df-ov |
|- ( ( ( 1st ` f ) ( <. ( 1st ` z ) , ( 1st ` y ) >. ( comp ` C ) ( 1st ` x ) ) ( 1st ` g ) ) ( <. ( 1st ` x ) , ( 2nd ` x ) >. ( 2nd ` M ) <. ( 1st ` z ) , ( 2nd ` z ) >. ) ( ( 2nd ` g ) ( <. ( 2nd ` x ) , ( 2nd ` y ) >. ( comp ` C ) ( 2nd ` z ) ) ( 2nd ` f ) ) ) = ( ( <. ( 1st ` x ) , ( 2nd ` x ) >. ( 2nd ` M ) <. ( 1st ` z ) , ( 2nd ` z ) >. ) ` <. ( ( 1st ` f ) ( <. ( 1st ` z ) , ( 1st ` y ) >. ( comp ` C ) ( 1st ` x ) ) ( 1st ` g ) ) , ( ( 2nd ` g ) ( <. ( 2nd ` x ) , ( 2nd ` y ) >. ( comp ` C ) ( 2nd ` z ) ) ( 2nd ` f ) ) >. ) |
| 217 |
215 216
|
eqtr4di |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( O Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) ) -> ( ( x ( 2nd ` M ) z ) ` ( g ( <. x , y >. ( comp ` ( O Xc. C ) ) z ) f ) ) = ( ( ( 1st ` f ) ( <. ( 1st ` z ) , ( 1st ` y ) >. ( comp ` C ) ( 1st ` x ) ) ( 1st ` g ) ) ( <. ( 1st ` x ) , ( 2nd ` x ) >. ( 2nd ` M ) <. ( 1st ` z ) , ( 2nd ` z ) >. ) ( ( 2nd ` g ) ( <. ( 2nd ` x ) , ( 2nd ` y ) >. ( comp ` C ) ( 2nd ` z ) ) ( 2nd ` f ) ) ) ) |
| 218 |
198
|
fveq2d |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( O Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) ) -> ( ( Homf ` C ) ` x ) = ( ( Homf ` C ) ` <. ( 1st ` x ) , ( 2nd ` x ) >. ) ) |
| 219 |
218 90
|
eqtr4di |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( O Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) ) -> ( ( Homf ` C ) ` x ) = ( ( 1st ` x ) ( Homf ` C ) ( 2nd ` x ) ) ) |
| 220 |
34 7 8 170 171
|
homfval |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( O Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) ) -> ( ( 1st ` x ) ( Homf ` C ) ( 2nd ` x ) ) = ( ( 1st ` x ) ( Hom ` C ) ( 2nd ` x ) ) ) |
| 221 |
219 220
|
eqtrd |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( O Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) ) -> ( ( Homf ` C ) ` x ) = ( ( 1st ` x ) ( Hom ` C ) ( 2nd ` x ) ) ) |
| 222 |
202
|
fveq2d |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( O Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) ) -> ( ( Homf ` C ) ` y ) = ( ( Homf ` C ) ` <. ( 1st ` y ) , ( 2nd ` y ) >. ) ) |
| 223 |
222 98
|
eqtr4di |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( O Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) ) -> ( ( Homf ` C ) ` y ) = ( ( 1st ` y ) ( Homf ` C ) ( 2nd ` y ) ) ) |
| 224 |
34 7 8 173 174
|
homfval |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( O Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) ) -> ( ( 1st ` y ) ( Homf ` C ) ( 2nd ` y ) ) = ( ( 1st ` y ) ( Hom ` C ) ( 2nd ` y ) ) ) |
| 225 |
223 224
|
eqtrd |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( O Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) ) -> ( ( Homf ` C ) ` y ) = ( ( 1st ` y ) ( Hom ` C ) ( 2nd ` y ) ) ) |
| 226 |
221 225
|
opeq12d |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( O Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) ) -> <. ( ( Homf ` C ) ` x ) , ( ( Homf ` C ) ` y ) >. = <. ( ( 1st ` x ) ( Hom ` C ) ( 2nd ` x ) ) , ( ( 1st ` y ) ( Hom ` C ) ( 2nd ` y ) ) >. ) |
| 227 |
200
|
fveq2d |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( O Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) ) -> ( ( Homf ` C ) ` z ) = ( ( Homf ` C ) ` <. ( 1st ` z ) , ( 2nd ` z ) >. ) ) |
| 228 |
|
df-ov |
|- ( ( 1st ` z ) ( Homf ` C ) ( 2nd ` z ) ) = ( ( Homf ` C ) ` <. ( 1st ` z ) , ( 2nd ` z ) >. ) |
| 229 |
227 228
|
eqtr4di |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( O Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) ) -> ( ( Homf ` C ) ` z ) = ( ( 1st ` z ) ( Homf ` C ) ( 2nd ` z ) ) ) |
| 230 |
34 7 8 177 179
|
homfval |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( O Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) ) -> ( ( 1st ` z ) ( Homf ` C ) ( 2nd ` z ) ) = ( ( 1st ` z ) ( Hom ` C ) ( 2nd ` z ) ) ) |
| 231 |
229 230
|
eqtrd |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( O Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) ) -> ( ( Homf ` C ) ` z ) = ( ( 1st ` z ) ( Hom ` C ) ( 2nd ` z ) ) ) |
| 232 |
226 231
|
oveq12d |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( O Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) ) -> ( <. ( ( Homf ` C ) ` x ) , ( ( Homf ` C ) ` y ) >. ( comp ` D ) ( ( Homf ` C ) ` z ) ) = ( <. ( ( 1st ` x ) ( Hom ` C ) ( 2nd ` x ) ) , ( ( 1st ` y ) ( Hom ` C ) ( 2nd ` y ) ) >. ( comp ` D ) ( ( 1st ` z ) ( Hom ` C ) ( 2nd ` z ) ) ) ) |
| 233 |
202 200
|
oveq12d |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( O Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) ) -> ( y ( 2nd ` M ) z ) = ( <. ( 1st ` y ) , ( 2nd ` y ) >. ( 2nd ` M ) <. ( 1st ` z ) , ( 2nd ` z ) >. ) ) |
| 234 |
233 206
|
fveq12d |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( O Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) ) -> ( ( y ( 2nd ` M ) z ) ` g ) = ( ( <. ( 1st ` y ) , ( 2nd ` y ) >. ( 2nd ` M ) <. ( 1st ` z ) , ( 2nd ` z ) >. ) ` <. ( 1st ` g ) , ( 2nd ` g ) >. ) ) |
| 235 |
|
df-ov |
|- ( ( 1st ` g ) ( <. ( 1st ` y ) , ( 2nd ` y ) >. ( 2nd ` M ) <. ( 1st ` z ) , ( 2nd ` z ) >. ) ( 2nd ` g ) ) = ( ( <. ( 1st ` y ) , ( 2nd ` y ) >. ( 2nd ` M ) <. ( 1st ` z ) , ( 2nd ` z ) >. ) ` <. ( 1st ` g ) , ( 2nd ` g ) >. ) |
| 236 |
234 235
|
eqtr4di |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( O Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) ) -> ( ( y ( 2nd ` M ) z ) ` g ) = ( ( 1st ` g ) ( <. ( 1st ` y ) , ( 2nd ` y ) >. ( 2nd ` M ) <. ( 1st ` z ) , ( 2nd ` z ) >. ) ( 2nd ` g ) ) ) |
| 237 |
198 202
|
oveq12d |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( O Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) ) -> ( x ( 2nd ` M ) y ) = ( <. ( 1st ` x ) , ( 2nd ` x ) >. ( 2nd ` M ) <. ( 1st ` y ) , ( 2nd ` y ) >. ) ) |
| 238 |
237 208
|
fveq12d |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( O Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) ) -> ( ( x ( 2nd ` M ) y ) ` f ) = ( ( <. ( 1st ` x ) , ( 2nd ` x ) >. ( 2nd ` M ) <. ( 1st ` y ) , ( 2nd ` y ) >. ) ` <. ( 1st ` f ) , ( 2nd ` f ) >. ) ) |
| 239 |
|
df-ov |
|- ( ( 1st ` f ) ( <. ( 1st ` x ) , ( 2nd ` x ) >. ( 2nd ` M ) <. ( 1st ` y ) , ( 2nd ` y ) >. ) ( 2nd ` f ) ) = ( ( <. ( 1st ` x ) , ( 2nd ` x ) >. ( 2nd ` M ) <. ( 1st ` y ) , ( 2nd ` y ) >. ) ` <. ( 1st ` f ) , ( 2nd ` f ) >. ) |
| 240 |
238 239
|
eqtr4di |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( O Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) ) -> ( ( x ( 2nd ` M ) y ) ` f ) = ( ( 1st ` f ) ( <. ( 1st ` x ) , ( 2nd ` x ) >. ( 2nd ` M ) <. ( 1st ` y ) , ( 2nd ` y ) >. ) ( 2nd ` f ) ) ) |
| 241 |
232 236 240
|
oveq123d |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( O Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) ) -> ( ( ( y ( 2nd ` M ) z ) ` g ) ( <. ( ( Homf ` C ) ` x ) , ( ( Homf ` C ) ` y ) >. ( comp ` D ) ( ( Homf ` C ) ` z ) ) ( ( x ( 2nd ` M ) y ) ` f ) ) = ( ( ( 1st ` g ) ( <. ( 1st ` y ) , ( 2nd ` y ) >. ( 2nd ` M ) <. ( 1st ` z ) , ( 2nd ` z ) >. ) ( 2nd ` g ) ) ( <. ( ( 1st ` x ) ( Hom ` C ) ( 2nd ` x ) ) , ( ( 1st ` y ) ( Hom ` C ) ( 2nd ` y ) ) >. ( comp ` D ) ( ( 1st ` z ) ( Hom ` C ) ( 2nd ` z ) ) ) ( ( 1st ` f ) ( <. ( 1st ` x ) , ( 2nd ` x ) >. ( 2nd ` M ) <. ( 1st ` y ) , ( 2nd ` y ) >. ) ( 2nd ` f ) ) ) ) |
| 242 |
197 217 241
|
3eqtr4d |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( O Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) ) -> ( ( x ( 2nd ` M ) z ) ` ( g ( <. x , y >. ( comp ` ( O Xc. C ) ) z ) f ) ) = ( ( ( y ( 2nd ` M ) z ) ` g ) ( <. ( ( Homf ` C ) ` x ) , ( ( Homf ` C ) ` y ) >. ( comp ` D ) ( ( Homf ` C ) ` z ) ) ( ( x ( 2nd ` M ) y ) ` f ) ) ) |
| 243 |
21 22 23 24 25 26 27 28 31 33 41 48 123 165 242
|
isfuncd |
|- ( ph -> ( Homf ` C ) ( ( O Xc. C ) Func D ) ( 2nd ` M ) ) |
| 244 |
|
df-br |
|- ( ( Homf ` C ) ( ( O Xc. C ) Func D ) ( 2nd ` M ) <-> <. ( Homf ` C ) , ( 2nd ` M ) >. e. ( ( O Xc. C ) Func D ) ) |
| 245 |
243 244
|
sylib |
|- ( ph -> <. ( Homf ` C ) , ( 2nd ` M ) >. e. ( ( O Xc. C ) Func D ) ) |
| 246 |
18 245
|
eqeltrd |
|- ( ph -> M e. ( ( O Xc. C ) Func D ) ) |