Step |
Hyp |
Ref |
Expression |
1 |
|
hofcl.m |
|- M = ( HomF ` C ) |
2 |
|
hofcl.o |
|- O = ( oppCat ` C ) |
3 |
|
hofcl.d |
|- D = ( SetCat ` U ) |
4 |
|
hofcl.c |
|- ( ph -> C e. Cat ) |
5 |
|
hofcl.u |
|- ( ph -> U e. V ) |
6 |
|
hofcl.h |
|- ( ph -> ran ( Homf ` C ) C_ U ) |
7 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
8 |
|
eqid |
|- ( Hom ` C ) = ( Hom ` C ) |
9 |
|
eqid |
|- ( comp ` C ) = ( comp ` C ) |
10 |
1 4 7 8 9
|
hofval |
|- ( ph -> M = <. ( Homf ` C ) , ( x e. ( ( Base ` C ) X. ( Base ` C ) ) , y e. ( ( Base ` C ) X. ( Base ` C ) ) |-> ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) , g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) |-> ( h e. ( ( Hom ` C ) ` x ) |-> ( ( g ( x ( comp ` C ) ( 2nd ` y ) ) h ) ( <. ( 1st ` y ) , ( 1st ` x ) >. ( comp ` C ) ( 2nd ` y ) ) f ) ) ) ) >. ) |
11 |
|
fvex |
|- ( Homf ` C ) e. _V |
12 |
|
fvex |
|- ( Base ` C ) e. _V |
13 |
12 12
|
xpex |
|- ( ( Base ` C ) X. ( Base ` C ) ) e. _V |
14 |
13 13
|
mpoex |
|- ( x e. ( ( Base ` C ) X. ( Base ` C ) ) , y e. ( ( Base ` C ) X. ( Base ` C ) ) |-> ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) , g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) |-> ( h e. ( ( Hom ` C ) ` x ) |-> ( ( g ( x ( comp ` C ) ( 2nd ` y ) ) h ) ( <. ( 1st ` y ) , ( 1st ` x ) >. ( comp ` C ) ( 2nd ` y ) ) f ) ) ) ) e. _V |
15 |
11 14
|
op2ndd |
|- ( M = <. ( Homf ` C ) , ( x e. ( ( Base ` C ) X. ( Base ` C ) ) , y e. ( ( Base ` C ) X. ( Base ` C ) ) |-> ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) , g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) |-> ( h e. ( ( Hom ` C ) ` x ) |-> ( ( g ( x ( comp ` C ) ( 2nd ` y ) ) h ) ( <. ( 1st ` y ) , ( 1st ` x ) >. ( comp ` C ) ( 2nd ` y ) ) f ) ) ) ) >. -> ( 2nd ` M ) = ( x e. ( ( Base ` C ) X. ( Base ` C ) ) , y e. ( ( Base ` C ) X. ( Base ` C ) ) |-> ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) , g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) |-> ( h e. ( ( Hom ` C ) ` x ) |-> ( ( g ( x ( comp ` C ) ( 2nd ` y ) ) h ) ( <. ( 1st ` y ) , ( 1st ` x ) >. ( comp ` C ) ( 2nd ` y ) ) f ) ) ) ) ) |
16 |
10 15
|
syl |
|- ( ph -> ( 2nd ` M ) = ( x e. ( ( Base ` C ) X. ( Base ` C ) ) , y e. ( ( Base ` C ) X. ( Base ` C ) ) |-> ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) , g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) |-> ( h e. ( ( Hom ` C ) ` x ) |-> ( ( g ( x ( comp ` C ) ( 2nd ` y ) ) h ) ( <. ( 1st ` y ) , ( 1st ` x ) >. ( comp ` C ) ( 2nd ` y ) ) f ) ) ) ) ) |
17 |
16
|
opeq2d |
|- ( ph -> <. ( Homf ` C ) , ( 2nd ` M ) >. = <. ( Homf ` C ) , ( x e. ( ( Base ` C ) X. ( Base ` C ) ) , y e. ( ( Base ` C ) X. ( Base ` C ) ) |-> ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) , g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) |-> ( h e. ( ( Hom ` C ) ` x ) |-> ( ( g ( x ( comp ` C ) ( 2nd ` y ) ) h ) ( <. ( 1st ` y ) , ( 1st ` x ) >. ( comp ` C ) ( 2nd ` y ) ) f ) ) ) ) >. ) |
18 |
10 17
|
eqtr4d |
|- ( ph -> M = <. ( Homf ` C ) , ( 2nd ` M ) >. ) |
19 |
|
eqid |
|- ( O Xc. C ) = ( O Xc. C ) |
20 |
2 7
|
oppcbas |
|- ( Base ` C ) = ( Base ` O ) |
21 |
19 20 7
|
xpcbas |
|- ( ( Base ` C ) X. ( Base ` C ) ) = ( Base ` ( O Xc. C ) ) |
22 |
|
eqid |
|- ( Base ` D ) = ( Base ` D ) |
23 |
|
eqid |
|- ( Hom ` ( O Xc. C ) ) = ( Hom ` ( O Xc. C ) ) |
24 |
|
eqid |
|- ( Hom ` D ) = ( Hom ` D ) |
25 |
|
eqid |
|- ( Id ` ( O Xc. C ) ) = ( Id ` ( O Xc. C ) ) |
26 |
|
eqid |
|- ( Id ` D ) = ( Id ` D ) |
27 |
|
eqid |
|- ( comp ` ( O Xc. C ) ) = ( comp ` ( O Xc. C ) ) |
28 |
|
eqid |
|- ( comp ` D ) = ( comp ` D ) |
29 |
2
|
oppccat |
|- ( C e. Cat -> O e. Cat ) |
30 |
4 29
|
syl |
|- ( ph -> O e. Cat ) |
31 |
19 30 4
|
xpccat |
|- ( ph -> ( O Xc. C ) e. Cat ) |
32 |
3
|
setccat |
|- ( U e. V -> D e. Cat ) |
33 |
5 32
|
syl |
|- ( ph -> D e. Cat ) |
34 |
|
eqid |
|- ( Homf ` C ) = ( Homf ` C ) |
35 |
34 7
|
homffn |
|- ( Homf ` C ) Fn ( ( Base ` C ) X. ( Base ` C ) ) |
36 |
35
|
a1i |
|- ( ph -> ( Homf ` C ) Fn ( ( Base ` C ) X. ( Base ` C ) ) ) |
37 |
|
df-f |
|- ( ( Homf ` C ) : ( ( Base ` C ) X. ( Base ` C ) ) --> U <-> ( ( Homf ` C ) Fn ( ( Base ` C ) X. ( Base ` C ) ) /\ ran ( Homf ` C ) C_ U ) ) |
38 |
36 6 37
|
sylanbrc |
|- ( ph -> ( Homf ` C ) : ( ( Base ` C ) X. ( Base ` C ) ) --> U ) |
39 |
3 5
|
setcbas |
|- ( ph -> U = ( Base ` D ) ) |
40 |
39
|
feq3d |
|- ( ph -> ( ( Homf ` C ) : ( ( Base ` C ) X. ( Base ` C ) ) --> U <-> ( Homf ` C ) : ( ( Base ` C ) X. ( Base ` C ) ) --> ( Base ` D ) ) ) |
41 |
38 40
|
mpbid |
|- ( ph -> ( Homf ` C ) : ( ( Base ` C ) X. ( Base ` C ) ) --> ( Base ` D ) ) |
42 |
|
eqid |
|- ( x e. ( ( Base ` C ) X. ( Base ` C ) ) , y e. ( ( Base ` C ) X. ( Base ` C ) ) |-> ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) , g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) |-> ( h e. ( ( Hom ` C ) ` x ) |-> ( ( g ( x ( comp ` C ) ( 2nd ` y ) ) h ) ( <. ( 1st ` y ) , ( 1st ` x ) >. ( comp ` C ) ( 2nd ` y ) ) f ) ) ) ) = ( x e. ( ( Base ` C ) X. ( Base ` C ) ) , y e. ( ( Base ` C ) X. ( Base ` C ) ) |-> ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) , g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) |-> ( h e. ( ( Hom ` C ) ` x ) |-> ( ( g ( x ( comp ` C ) ( 2nd ` y ) ) h ) ( <. ( 1st ` y ) , ( 1st ` x ) >. ( comp ` C ) ( 2nd ` y ) ) f ) ) ) ) |
43 |
|
ovex |
|- ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) e. _V |
44 |
|
ovex |
|- ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) e. _V |
45 |
43 44
|
mpoex |
|- ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) , g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) |-> ( h e. ( ( Hom ` C ) ` x ) |-> ( ( g ( x ( comp ` C ) ( 2nd ` y ) ) h ) ( <. ( 1st ` y ) , ( 1st ` x ) >. ( comp ` C ) ( 2nd ` y ) ) f ) ) ) e. _V |
46 |
42 45
|
fnmpoi |
|- ( x e. ( ( Base ` C ) X. ( Base ` C ) ) , y e. ( ( Base ` C ) X. ( Base ` C ) ) |-> ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) , g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) |-> ( h e. ( ( Hom ` C ) ` x ) |-> ( ( g ( x ( comp ` C ) ( 2nd ` y ) ) h ) ( <. ( 1st ` y ) , ( 1st ` x ) >. ( comp ` C ) ( 2nd ` y ) ) f ) ) ) ) Fn ( ( ( Base ` C ) X. ( Base ` C ) ) X. ( ( Base ` C ) X. ( Base ` C ) ) ) |
47 |
16
|
fneq1d |
|- ( ph -> ( ( 2nd ` M ) Fn ( ( ( Base ` C ) X. ( Base ` C ) ) X. ( ( Base ` C ) X. ( Base ` C ) ) ) <-> ( x e. ( ( Base ` C ) X. ( Base ` C ) ) , y e. ( ( Base ` C ) X. ( Base ` C ) ) |-> ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) , g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) |-> ( h e. ( ( Hom ` C ) ` x ) |-> ( ( g ( x ( comp ` C ) ( 2nd ` y ) ) h ) ( <. ( 1st ` y ) , ( 1st ` x ) >. ( comp ` C ) ( 2nd ` y ) ) f ) ) ) ) Fn ( ( ( Base ` C ) X. ( Base ` C ) ) X. ( ( Base ` C ) X. ( Base ` C ) ) ) ) ) |
48 |
46 47
|
mpbiri |
|- ( ph -> ( 2nd ` M ) Fn ( ( ( Base ` C ) X. ( Base ` C ) ) X. ( ( Base ` C ) X. ( Base ` C ) ) ) ) |
49 |
4
|
ad3antrrr |
|- ( ( ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) /\ ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) /\ g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) /\ h e. ( ( Hom ` C ) ` x ) ) -> C e. Cat ) |
50 |
|
simplrr |
|- ( ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) /\ ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) /\ g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) -> y e. ( ( Base ` C ) X. ( Base ` C ) ) ) |
51 |
|
xp1st |
|- ( y e. ( ( Base ` C ) X. ( Base ` C ) ) -> ( 1st ` y ) e. ( Base ` C ) ) |
52 |
50 51
|
syl |
|- ( ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) /\ ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) /\ g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) -> ( 1st ` y ) e. ( Base ` C ) ) |
53 |
52
|
adantr |
|- ( ( ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) /\ ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) /\ g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) /\ h e. ( ( Hom ` C ) ` x ) ) -> ( 1st ` y ) e. ( Base ` C ) ) |
54 |
|
simplrl |
|- ( ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) /\ ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) /\ g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) -> x e. ( ( Base ` C ) X. ( Base ` C ) ) ) |
55 |
|
xp1st |
|- ( x e. ( ( Base ` C ) X. ( Base ` C ) ) -> ( 1st ` x ) e. ( Base ` C ) ) |
56 |
54 55
|
syl |
|- ( ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) /\ ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) /\ g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) -> ( 1st ` x ) e. ( Base ` C ) ) |
57 |
56
|
adantr |
|- ( ( ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) /\ ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) /\ g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) /\ h e. ( ( Hom ` C ) ` x ) ) -> ( 1st ` x ) e. ( Base ` C ) ) |
58 |
|
xp2nd |
|- ( y e. ( ( Base ` C ) X. ( Base ` C ) ) -> ( 2nd ` y ) e. ( Base ` C ) ) |
59 |
50 58
|
syl |
|- ( ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) /\ ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) /\ g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) -> ( 2nd ` y ) e. ( Base ` C ) ) |
60 |
59
|
adantr |
|- ( ( ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) /\ ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) /\ g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) /\ h e. ( ( Hom ` C ) ` x ) ) -> ( 2nd ` y ) e. ( Base ` C ) ) |
61 |
|
simplrl |
|- ( ( ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) /\ ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) /\ g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) /\ h e. ( ( Hom ` C ) ` x ) ) -> f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) ) |
62 |
|
1st2nd2 |
|- ( x e. ( ( Base ` C ) X. ( Base ` C ) ) -> x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) |
63 |
54 62
|
syl |
|- ( ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) /\ ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) /\ g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) -> x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) |
64 |
63
|
adantr |
|- ( ( ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) /\ ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) /\ g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) /\ h e. ( ( Hom ` C ) ` x ) ) -> x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) |
65 |
64
|
oveq1d |
|- ( ( ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) /\ ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) /\ g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) /\ h e. ( ( Hom ` C ) ` x ) ) -> ( x ( comp ` C ) ( 2nd ` y ) ) = ( <. ( 1st ` x ) , ( 2nd ` x ) >. ( comp ` C ) ( 2nd ` y ) ) ) |
66 |
65
|
oveqd |
|- ( ( ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) /\ ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) /\ g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) /\ h e. ( ( Hom ` C ) ` x ) ) -> ( g ( x ( comp ` C ) ( 2nd ` y ) ) h ) = ( g ( <. ( 1st ` x ) , ( 2nd ` x ) >. ( comp ` C ) ( 2nd ` y ) ) h ) ) |
67 |
|
xp2nd |
|- ( x e. ( ( Base ` C ) X. ( Base ` C ) ) -> ( 2nd ` x ) e. ( Base ` C ) ) |
68 |
54 67
|
syl |
|- ( ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) /\ ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) /\ g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) -> ( 2nd ` x ) e. ( Base ` C ) ) |
69 |
68
|
adantr |
|- ( ( ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) /\ ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) /\ g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) /\ h e. ( ( Hom ` C ) ` x ) ) -> ( 2nd ` x ) e. ( Base ` C ) ) |
70 |
63
|
fveq2d |
|- ( ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) /\ ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) /\ g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) -> ( ( Hom ` C ) ` x ) = ( ( Hom ` C ) ` <. ( 1st ` x ) , ( 2nd ` x ) >. ) ) |
71 |
|
df-ov |
|- ( ( 1st ` x ) ( Hom ` C ) ( 2nd ` x ) ) = ( ( Hom ` C ) ` <. ( 1st ` x ) , ( 2nd ` x ) >. ) |
72 |
70 71
|
eqtr4di |
|- ( ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) /\ ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) /\ g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) -> ( ( Hom ` C ) ` x ) = ( ( 1st ` x ) ( Hom ` C ) ( 2nd ` x ) ) ) |
73 |
72
|
eleq2d |
|- ( ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) /\ ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) /\ g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) -> ( h e. ( ( Hom ` C ) ` x ) <-> h e. ( ( 1st ` x ) ( Hom ` C ) ( 2nd ` x ) ) ) ) |
74 |
73
|
biimpa |
|- ( ( ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) /\ ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) /\ g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) /\ h e. ( ( Hom ` C ) ` x ) ) -> h e. ( ( 1st ` x ) ( Hom ` C ) ( 2nd ` x ) ) ) |
75 |
|
simplrr |
|- ( ( ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) /\ ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) /\ g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) /\ h e. ( ( Hom ` C ) ` x ) ) -> g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) |
76 |
7 8 9 49 57 69 60 74 75
|
catcocl |
|- ( ( ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) /\ ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) /\ g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) /\ h e. ( ( Hom ` C ) ` x ) ) -> ( g ( <. ( 1st ` x ) , ( 2nd ` x ) >. ( comp ` C ) ( 2nd ` y ) ) h ) e. ( ( 1st ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) |
77 |
66 76
|
eqeltrd |
|- ( ( ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) /\ ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) /\ g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) /\ h e. ( ( Hom ` C ) ` x ) ) -> ( g ( x ( comp ` C ) ( 2nd ` y ) ) h ) e. ( ( 1st ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) |
78 |
7 8 9 49 53 57 60 61 77
|
catcocl |
|- ( ( ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) /\ ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) /\ g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) /\ h e. ( ( Hom ` C ) ` x ) ) -> ( ( g ( x ( comp ` C ) ( 2nd ` y ) ) h ) ( <. ( 1st ` y ) , ( 1st ` x ) >. ( comp ` C ) ( 2nd ` y ) ) f ) e. ( ( 1st ` y ) ( Hom ` C ) ( 2nd ` y ) ) ) |
79 |
|
1st2nd2 |
|- ( y e. ( ( Base ` C ) X. ( Base ` C ) ) -> y = <. ( 1st ` y ) , ( 2nd ` y ) >. ) |
80 |
50 79
|
syl |
|- ( ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) /\ ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) /\ g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) -> y = <. ( 1st ` y ) , ( 2nd ` y ) >. ) |
81 |
80
|
fveq2d |
|- ( ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) /\ ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) /\ g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) -> ( ( Hom ` C ) ` y ) = ( ( Hom ` C ) ` <. ( 1st ` y ) , ( 2nd ` y ) >. ) ) |
82 |
|
df-ov |
|- ( ( 1st ` y ) ( Hom ` C ) ( 2nd ` y ) ) = ( ( Hom ` C ) ` <. ( 1st ` y ) , ( 2nd ` y ) >. ) |
83 |
81 82
|
eqtr4di |
|- ( ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) /\ ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) /\ g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) -> ( ( Hom ` C ) ` y ) = ( ( 1st ` y ) ( Hom ` C ) ( 2nd ` y ) ) ) |
84 |
83
|
adantr |
|- ( ( ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) /\ ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) /\ g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) /\ h e. ( ( Hom ` C ) ` x ) ) -> ( ( Hom ` C ) ` y ) = ( ( 1st ` y ) ( Hom ` C ) ( 2nd ` y ) ) ) |
85 |
78 84
|
eleqtrrd |
|- ( ( ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) /\ ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) /\ g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) /\ h e. ( ( Hom ` C ) ` x ) ) -> ( ( g ( x ( comp ` C ) ( 2nd ` y ) ) h ) ( <. ( 1st ` y ) , ( 1st ` x ) >. ( comp ` C ) ( 2nd ` y ) ) f ) e. ( ( Hom ` C ) ` y ) ) |
86 |
85
|
fmpttd |
|- ( ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) /\ ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) /\ g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) -> ( h e. ( ( Hom ` C ) ` x ) |-> ( ( g ( x ( comp ` C ) ( 2nd ` y ) ) h ) ( <. ( 1st ` y ) , ( 1st ` x ) >. ( comp ` C ) ( 2nd ` y ) ) f ) ) : ( ( Hom ` C ) ` x ) --> ( ( Hom ` C ) ` y ) ) |
87 |
5
|
ad2antrr |
|- ( ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) /\ ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) /\ g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) -> U e. V ) |
88 |
34 7 8 56 68
|
homfval |
|- ( ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) /\ ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) /\ g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) -> ( ( 1st ` x ) ( Homf ` C ) ( 2nd ` x ) ) = ( ( 1st ` x ) ( Hom ` C ) ( 2nd ` x ) ) ) |
89 |
63
|
fveq2d |
|- ( ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) /\ ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) /\ g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) -> ( ( Homf ` C ) ` x ) = ( ( Homf ` C ) ` <. ( 1st ` x ) , ( 2nd ` x ) >. ) ) |
90 |
|
df-ov |
|- ( ( 1st ` x ) ( Homf ` C ) ( 2nd ` x ) ) = ( ( Homf ` C ) ` <. ( 1st ` x ) , ( 2nd ` x ) >. ) |
91 |
89 90
|
eqtr4di |
|- ( ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) /\ ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) /\ g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) -> ( ( Homf ` C ) ` x ) = ( ( 1st ` x ) ( Homf ` C ) ( 2nd ` x ) ) ) |
92 |
88 91 72
|
3eqtr4d |
|- ( ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) /\ ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) /\ g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) -> ( ( Homf ` C ) ` x ) = ( ( Hom ` C ) ` x ) ) |
93 |
38
|
ad2antrr |
|- ( ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) /\ ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) /\ g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) -> ( Homf ` C ) : ( ( Base ` C ) X. ( Base ` C ) ) --> U ) |
94 |
93 54
|
ffvelrnd |
|- ( ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) /\ ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) /\ g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) -> ( ( Homf ` C ) ` x ) e. U ) |
95 |
92 94
|
eqeltrrd |
|- ( ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) /\ ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) /\ g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) -> ( ( Hom ` C ) ` x ) e. U ) |
96 |
34 7 8 52 59
|
homfval |
|- ( ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) /\ ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) /\ g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) -> ( ( 1st ` y ) ( Homf ` C ) ( 2nd ` y ) ) = ( ( 1st ` y ) ( Hom ` C ) ( 2nd ` y ) ) ) |
97 |
80
|
fveq2d |
|- ( ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) /\ ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) /\ g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) -> ( ( Homf ` C ) ` y ) = ( ( Homf ` C ) ` <. ( 1st ` y ) , ( 2nd ` y ) >. ) ) |
98 |
|
df-ov |
|- ( ( 1st ` y ) ( Homf ` C ) ( 2nd ` y ) ) = ( ( Homf ` C ) ` <. ( 1st ` y ) , ( 2nd ` y ) >. ) |
99 |
97 98
|
eqtr4di |
|- ( ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) /\ ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) /\ g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) -> ( ( Homf ` C ) ` y ) = ( ( 1st ` y ) ( Homf ` C ) ( 2nd ` y ) ) ) |
100 |
96 99 83
|
3eqtr4d |
|- ( ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) /\ ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) /\ g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) -> ( ( Homf ` C ) ` y ) = ( ( Hom ` C ) ` y ) ) |
101 |
93 50
|
ffvelrnd |
|- ( ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) /\ ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) /\ g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) -> ( ( Homf ` C ) ` y ) e. U ) |
102 |
100 101
|
eqeltrrd |
|- ( ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) /\ ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) /\ g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) -> ( ( Hom ` C ) ` y ) e. U ) |
103 |
3 87 24 95 102
|
elsetchom |
|- ( ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) /\ ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) /\ g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) -> ( ( h e. ( ( Hom ` C ) ` x ) |-> ( ( g ( x ( comp ` C ) ( 2nd ` y ) ) h ) ( <. ( 1st ` y ) , ( 1st ` x ) >. ( comp ` C ) ( 2nd ` y ) ) f ) ) e. ( ( ( Hom ` C ) ` x ) ( Hom ` D ) ( ( Hom ` C ) ` y ) ) <-> ( h e. ( ( Hom ` C ) ` x ) |-> ( ( g ( x ( comp ` C ) ( 2nd ` y ) ) h ) ( <. ( 1st ` y ) , ( 1st ` x ) >. ( comp ` C ) ( 2nd ` y ) ) f ) ) : ( ( Hom ` C ) ` x ) --> ( ( Hom ` C ) ` y ) ) ) |
104 |
86 103
|
mpbird |
|- ( ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) /\ ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) /\ g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) -> ( h e. ( ( Hom ` C ) ` x ) |-> ( ( g ( x ( comp ` C ) ( 2nd ` y ) ) h ) ( <. ( 1st ` y ) , ( 1st ` x ) >. ( comp ` C ) ( 2nd ` y ) ) f ) ) e. ( ( ( Hom ` C ) ` x ) ( Hom ` D ) ( ( Hom ` C ) ` y ) ) ) |
105 |
92 100
|
oveq12d |
|- ( ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) /\ ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) /\ g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) -> ( ( ( Homf ` C ) ` x ) ( Hom ` D ) ( ( Homf ` C ) ` y ) ) = ( ( ( Hom ` C ) ` x ) ( Hom ` D ) ( ( Hom ` C ) ` y ) ) ) |
106 |
104 105
|
eleqtrrd |
|- ( ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) /\ ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) /\ g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) -> ( h e. ( ( Hom ` C ) ` x ) |-> ( ( g ( x ( comp ` C ) ( 2nd ` y ) ) h ) ( <. ( 1st ` y ) , ( 1st ` x ) >. ( comp ` C ) ( 2nd ` y ) ) f ) ) e. ( ( ( Homf ` C ) ` x ) ( Hom ` D ) ( ( Homf ` C ) ` y ) ) ) |
107 |
106
|
ralrimivva |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) -> A. f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) A. g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ( h e. ( ( Hom ` C ) ` x ) |-> ( ( g ( x ( comp ` C ) ( 2nd ` y ) ) h ) ( <. ( 1st ` y ) , ( 1st ` x ) >. ( comp ` C ) ( 2nd ` y ) ) f ) ) e. ( ( ( Homf ` C ) ` x ) ( Hom ` D ) ( ( Homf ` C ) ` y ) ) ) |
108 |
|
eqid |
|- ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) , g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) |-> ( h e. ( ( Hom ` C ) ` x ) |-> ( ( g ( x ( comp ` C ) ( 2nd ` y ) ) h ) ( <. ( 1st ` y ) , ( 1st ` x ) >. ( comp ` C ) ( 2nd ` y ) ) f ) ) ) = ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) , g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) |-> ( h e. ( ( Hom ` C ) ` x ) |-> ( ( g ( x ( comp ` C ) ( 2nd ` y ) ) h ) ( <. ( 1st ` y ) , ( 1st ` x ) >. ( comp ` C ) ( 2nd ` y ) ) f ) ) ) |
109 |
108
|
fmpo |
|- ( A. f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) A. g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ( h e. ( ( Hom ` C ) ` x ) |-> ( ( g ( x ( comp ` C ) ( 2nd ` y ) ) h ) ( <. ( 1st ` y ) , ( 1st ` x ) >. ( comp ` C ) ( 2nd ` y ) ) f ) ) e. ( ( ( Homf ` C ) ` x ) ( Hom ` D ) ( ( Homf ` C ) ` y ) ) <-> ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) , g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) |-> ( h e. ( ( Hom ` C ) ` x ) |-> ( ( g ( x ( comp ` C ) ( 2nd ` y ) ) h ) ( <. ( 1st ` y ) , ( 1st ` x ) >. ( comp ` C ) ( 2nd ` y ) ) f ) ) ) : ( ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) X. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) --> ( ( ( Homf ` C ) ` x ) ( Hom ` D ) ( ( Homf ` C ) ` y ) ) ) |
110 |
107 109
|
sylib |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) -> ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) , g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) |-> ( h e. ( ( Hom ` C ) ` x ) |-> ( ( g ( x ( comp ` C ) ( 2nd ` y ) ) h ) ( <. ( 1st ` y ) , ( 1st ` x ) >. ( comp ` C ) ( 2nd ` y ) ) f ) ) ) : ( ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) X. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) --> ( ( ( Homf ` C ) ` x ) ( Hom ` D ) ( ( Homf ` C ) ` y ) ) ) |
111 |
16
|
oveqd |
|- ( ph -> ( x ( 2nd ` M ) y ) = ( x ( x e. ( ( Base ` C ) X. ( Base ` C ) ) , y e. ( ( Base ` C ) X. ( Base ` C ) ) |-> ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) , g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) |-> ( h e. ( ( Hom ` C ) ` x ) |-> ( ( g ( x ( comp ` C ) ( 2nd ` y ) ) h ) ( <. ( 1st ` y ) , ( 1st ` x ) >. ( comp ` C ) ( 2nd ` y ) ) f ) ) ) ) y ) ) |
112 |
42
|
ovmpt4g |
|- ( ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) , g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) |-> ( h e. ( ( Hom ` C ) ` x ) |-> ( ( g ( x ( comp ` C ) ( 2nd ` y ) ) h ) ( <. ( 1st ` y ) , ( 1st ` x ) >. ( comp ` C ) ( 2nd ` y ) ) f ) ) ) e. _V ) -> ( x ( x e. ( ( Base ` C ) X. ( Base ` C ) ) , y e. ( ( Base ` C ) X. ( Base ` C ) ) |-> ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) , g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) |-> ( h e. ( ( Hom ` C ) ` x ) |-> ( ( g ( x ( comp ` C ) ( 2nd ` y ) ) h ) ( <. ( 1st ` y ) , ( 1st ` x ) >. ( comp ` C ) ( 2nd ` y ) ) f ) ) ) ) y ) = ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) , g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) |-> ( h e. ( ( Hom ` C ) ` x ) |-> ( ( g ( x ( comp ` C ) ( 2nd ` y ) ) h ) ( <. ( 1st ` y ) , ( 1st ` x ) >. ( comp ` C ) ( 2nd ` y ) ) f ) ) ) ) |
113 |
45 112
|
mp3an3 |
|- ( ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) -> ( x ( x e. ( ( Base ` C ) X. ( Base ` C ) ) , y e. ( ( Base ` C ) X. ( Base ` C ) ) |-> ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) , g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) |-> ( h e. ( ( Hom ` C ) ` x ) |-> ( ( g ( x ( comp ` C ) ( 2nd ` y ) ) h ) ( <. ( 1st ` y ) , ( 1st ` x ) >. ( comp ` C ) ( 2nd ` y ) ) f ) ) ) ) y ) = ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) , g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) |-> ( h e. ( ( Hom ` C ) ` x ) |-> ( ( g ( x ( comp ` C ) ( 2nd ` y ) ) h ) ( <. ( 1st ` y ) , ( 1st ` x ) >. ( comp ` C ) ( 2nd ` y ) ) f ) ) ) ) |
114 |
111 113
|
sylan9eq |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) -> ( x ( 2nd ` M ) y ) = ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) , g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) |-> ( h e. ( ( Hom ` C ) ` x ) |-> ( ( g ( x ( comp ` C ) ( 2nd ` y ) ) h ) ( <. ( 1st ` y ) , ( 1st ` x ) >. ( comp ` C ) ( 2nd ` y ) ) f ) ) ) ) |
115 |
|
eqid |
|- ( Hom ` O ) = ( Hom ` O ) |
116 |
|
simprl |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) -> x e. ( ( Base ` C ) X. ( Base ` C ) ) ) |
117 |
|
simprr |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) -> y e. ( ( Base ` C ) X. ( Base ` C ) ) ) |
118 |
19 21 115 8 23 116 117
|
xpchom |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) -> ( x ( Hom ` ( O Xc. C ) ) y ) = ( ( ( 1st ` x ) ( Hom ` O ) ( 1st ` y ) ) X. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) |
119 |
8 2
|
oppchom |
|- ( ( 1st ` x ) ( Hom ` O ) ( 1st ` y ) ) = ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) |
120 |
119
|
xpeq1i |
|- ( ( ( 1st ` x ) ( Hom ` O ) ( 1st ` y ) ) X. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) = ( ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) X. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) |
121 |
118 120
|
eqtrdi |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) -> ( x ( Hom ` ( O Xc. C ) ) y ) = ( ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) X. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) |
122 |
114 121
|
feq12d |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) -> ( ( x ( 2nd ` M ) y ) : ( x ( Hom ` ( O Xc. C ) ) y ) --> ( ( ( Homf ` C ) ` x ) ( Hom ` D ) ( ( Homf ` C ) ` y ) ) <-> ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) , g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) |-> ( h e. ( ( Hom ` C ) ` x ) |-> ( ( g ( x ( comp ` C ) ( 2nd ` y ) ) h ) ( <. ( 1st ` y ) , ( 1st ` x ) >. ( comp ` C ) ( 2nd ` y ) ) f ) ) ) : ( ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) X. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) --> ( ( ( Homf ` C ) ` x ) ( Hom ` D ) ( ( Homf ` C ) ` y ) ) ) ) |
123 |
110 122
|
mpbird |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) -> ( x ( 2nd ` M ) y ) : ( x ( Hom ` ( O Xc. C ) ) y ) --> ( ( ( Homf ` C ) ` x ) ( Hom ` D ) ( ( Homf ` C ) ` y ) ) ) |
124 |
|
eqid |
|- ( Id ` C ) = ( Id ` C ) |
125 |
4
|
ad2antrr |
|- ( ( ( ph /\ x e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ f e. ( ( 1st ` x ) ( Hom ` C ) ( 2nd ` x ) ) ) -> C e. Cat ) |
126 |
55
|
adantl |
|- ( ( ph /\ x e. ( ( Base ` C ) X. ( Base ` C ) ) ) -> ( 1st ` x ) e. ( Base ` C ) ) |
127 |
126
|
adantr |
|- ( ( ( ph /\ x e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ f e. ( ( 1st ` x ) ( Hom ` C ) ( 2nd ` x ) ) ) -> ( 1st ` x ) e. ( Base ` C ) ) |
128 |
67
|
adantl |
|- ( ( ph /\ x e. ( ( Base ` C ) X. ( Base ` C ) ) ) -> ( 2nd ` x ) e. ( Base ` C ) ) |
129 |
128
|
adantr |
|- ( ( ( ph /\ x e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ f e. ( ( 1st ` x ) ( Hom ` C ) ( 2nd ` x ) ) ) -> ( 2nd ` x ) e. ( Base ` C ) ) |
130 |
|
simpr |
|- ( ( ( ph /\ x e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ f e. ( ( 1st ` x ) ( Hom ` C ) ( 2nd ` x ) ) ) -> f e. ( ( 1st ` x ) ( Hom ` C ) ( 2nd ` x ) ) ) |
131 |
7 8 124 125 127 9 129 130
|
catlid |
|- ( ( ( ph /\ x e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ f e. ( ( 1st ` x ) ( Hom ` C ) ( 2nd ` x ) ) ) -> ( ( ( Id ` C ) ` ( 2nd ` x ) ) ( <. ( 1st ` x ) , ( 2nd ` x ) >. ( comp ` C ) ( 2nd ` x ) ) f ) = f ) |
132 |
131
|
oveq1d |
|- ( ( ( ph /\ x e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ f e. ( ( 1st ` x ) ( Hom ` C ) ( 2nd ` x ) ) ) -> ( ( ( ( Id ` C ) ` ( 2nd ` x ) ) ( <. ( 1st ` x ) , ( 2nd ` x ) >. ( comp ` C ) ( 2nd ` x ) ) f ) ( <. ( 1st ` x ) , ( 1st ` x ) >. ( comp ` C ) ( 2nd ` x ) ) ( ( Id ` C ) ` ( 1st ` x ) ) ) = ( f ( <. ( 1st ` x ) , ( 1st ` x ) >. ( comp ` C ) ( 2nd ` x ) ) ( ( Id ` C ) ` ( 1st ` x ) ) ) ) |
133 |
7 8 124 125 127 9 129 130
|
catrid |
|- ( ( ( ph /\ x e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ f e. ( ( 1st ` x ) ( Hom ` C ) ( 2nd ` x ) ) ) -> ( f ( <. ( 1st ` x ) , ( 1st ` x ) >. ( comp ` C ) ( 2nd ` x ) ) ( ( Id ` C ) ` ( 1st ` x ) ) ) = f ) |
134 |
132 133
|
eqtrd |
|- ( ( ( ph /\ x e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ f e. ( ( 1st ` x ) ( Hom ` C ) ( 2nd ` x ) ) ) -> ( ( ( ( Id ` C ) ` ( 2nd ` x ) ) ( <. ( 1st ` x ) , ( 2nd ` x ) >. ( comp ` C ) ( 2nd ` x ) ) f ) ( <. ( 1st ` x ) , ( 1st ` x ) >. ( comp ` C ) ( 2nd ` x ) ) ( ( Id ` C ) ` ( 1st ` x ) ) ) = f ) |
135 |
134
|
mpteq2dva |
|- ( ( ph /\ x e. ( ( Base ` C ) X. ( Base ` C ) ) ) -> ( f e. ( ( 1st ` x ) ( Hom ` C ) ( 2nd ` x ) ) |-> ( ( ( ( Id ` C ) ` ( 2nd ` x ) ) ( <. ( 1st ` x ) , ( 2nd ` x ) >. ( comp ` C ) ( 2nd ` x ) ) f ) ( <. ( 1st ` x ) , ( 1st ` x ) >. ( comp ` C ) ( 2nd ` x ) ) ( ( Id ` C ) ` ( 1st ` x ) ) ) ) = ( f e. ( ( 1st ` x ) ( Hom ` C ) ( 2nd ` x ) ) |-> f ) ) |
136 |
|
df-ov |
|- ( ( ( Id ` C ) ` ( 1st ` x ) ) ( <. ( 1st ` x ) , ( 2nd ` x ) >. ( 2nd ` M ) <. ( 1st ` x ) , ( 2nd ` x ) >. ) ( ( Id ` C ) ` ( 2nd ` x ) ) ) = ( ( <. ( 1st ` x ) , ( 2nd ` x ) >. ( 2nd ` M ) <. ( 1st ` x ) , ( 2nd ` x ) >. ) ` <. ( ( Id ` C ) ` ( 1st ` x ) ) , ( ( Id ` C ) ` ( 2nd ` x ) ) >. ) |
137 |
4
|
adantr |
|- ( ( ph /\ x e. ( ( Base ` C ) X. ( Base ` C ) ) ) -> C e. Cat ) |
138 |
7 8 124 137 126
|
catidcl |
|- ( ( ph /\ x e. ( ( Base ` C ) X. ( Base ` C ) ) ) -> ( ( Id ` C ) ` ( 1st ` x ) ) e. ( ( 1st ` x ) ( Hom ` C ) ( 1st ` x ) ) ) |
139 |
7 8 124 137 128
|
catidcl |
|- ( ( ph /\ x e. ( ( Base ` C ) X. ( Base ` C ) ) ) -> ( ( Id ` C ) ` ( 2nd ` x ) ) e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` x ) ) ) |
140 |
1 137 7 8 126 128 126 128 9 138 139
|
hof2val |
|- ( ( ph /\ x e. ( ( Base ` C ) X. ( Base ` C ) ) ) -> ( ( ( Id ` C ) ` ( 1st ` x ) ) ( <. ( 1st ` x ) , ( 2nd ` x ) >. ( 2nd ` M ) <. ( 1st ` x ) , ( 2nd ` x ) >. ) ( ( Id ` C ) ` ( 2nd ` x ) ) ) = ( f e. ( ( 1st ` x ) ( Hom ` C ) ( 2nd ` x ) ) |-> ( ( ( ( Id ` C ) ` ( 2nd ` x ) ) ( <. ( 1st ` x ) , ( 2nd ` x ) >. ( comp ` C ) ( 2nd ` x ) ) f ) ( <. ( 1st ` x ) , ( 1st ` x ) >. ( comp ` C ) ( 2nd ` x ) ) ( ( Id ` C ) ` ( 1st ` x ) ) ) ) ) |
141 |
136 140
|
eqtr3id |
|- ( ( ph /\ x e. ( ( Base ` C ) X. ( Base ` C ) ) ) -> ( ( <. ( 1st ` x ) , ( 2nd ` x ) >. ( 2nd ` M ) <. ( 1st ` x ) , ( 2nd ` x ) >. ) ` <. ( ( Id ` C ) ` ( 1st ` x ) ) , ( ( Id ` C ) ` ( 2nd ` x ) ) >. ) = ( f e. ( ( 1st ` x ) ( Hom ` C ) ( 2nd ` x ) ) |-> ( ( ( ( Id ` C ) ` ( 2nd ` x ) ) ( <. ( 1st ` x ) , ( 2nd ` x ) >. ( comp ` C ) ( 2nd ` x ) ) f ) ( <. ( 1st ` x ) , ( 1st ` x ) >. ( comp ` C ) ( 2nd ` x ) ) ( ( Id ` C ) ` ( 1st ` x ) ) ) ) ) |
142 |
62
|
adantl |
|- ( ( ph /\ x e. ( ( Base ` C ) X. ( Base ` C ) ) ) -> x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) |
143 |
142
|
fveq2d |
|- ( ( ph /\ x e. ( ( Base ` C ) X. ( Base ` C ) ) ) -> ( ( Homf ` C ) ` x ) = ( ( Homf ` C ) ` <. ( 1st ` x ) , ( 2nd ` x ) >. ) ) |
144 |
143 90
|
eqtr4di |
|- ( ( ph /\ x e. ( ( Base ` C ) X. ( Base ` C ) ) ) -> ( ( Homf ` C ) ` x ) = ( ( 1st ` x ) ( Homf ` C ) ( 2nd ` x ) ) ) |
145 |
34 7 8 126 128
|
homfval |
|- ( ( ph /\ x e. ( ( Base ` C ) X. ( Base ` C ) ) ) -> ( ( 1st ` x ) ( Homf ` C ) ( 2nd ` x ) ) = ( ( 1st ` x ) ( Hom ` C ) ( 2nd ` x ) ) ) |
146 |
144 145
|
eqtrd |
|- ( ( ph /\ x e. ( ( Base ` C ) X. ( Base ` C ) ) ) -> ( ( Homf ` C ) ` x ) = ( ( 1st ` x ) ( Hom ` C ) ( 2nd ` x ) ) ) |
147 |
146
|
reseq2d |
|- ( ( ph /\ x e. ( ( Base ` C ) X. ( Base ` C ) ) ) -> ( _I |` ( ( Homf ` C ) ` x ) ) = ( _I |` ( ( 1st ` x ) ( Hom ` C ) ( 2nd ` x ) ) ) ) |
148 |
|
mptresid |
|- ( _I |` ( ( 1st ` x ) ( Hom ` C ) ( 2nd ` x ) ) ) = ( f e. ( ( 1st ` x ) ( Hom ` C ) ( 2nd ` x ) ) |-> f ) |
149 |
147 148
|
eqtrdi |
|- ( ( ph /\ x e. ( ( Base ` C ) X. ( Base ` C ) ) ) -> ( _I |` ( ( Homf ` C ) ` x ) ) = ( f e. ( ( 1st ` x ) ( Hom ` C ) ( 2nd ` x ) ) |-> f ) ) |
150 |
135 141 149
|
3eqtr4d |
|- ( ( ph /\ x e. ( ( Base ` C ) X. ( Base ` C ) ) ) -> ( ( <. ( 1st ` x ) , ( 2nd ` x ) >. ( 2nd ` M ) <. ( 1st ` x ) , ( 2nd ` x ) >. ) ` <. ( ( Id ` C ) ` ( 1st ` x ) ) , ( ( Id ` C ) ` ( 2nd ` x ) ) >. ) = ( _I |` ( ( Homf ` C ) ` x ) ) ) |
151 |
142 142
|
oveq12d |
|- ( ( ph /\ x e. ( ( Base ` C ) X. ( Base ` C ) ) ) -> ( x ( 2nd ` M ) x ) = ( <. ( 1st ` x ) , ( 2nd ` x ) >. ( 2nd ` M ) <. ( 1st ` x ) , ( 2nd ` x ) >. ) ) |
152 |
142
|
fveq2d |
|- ( ( ph /\ x e. ( ( Base ` C ) X. ( Base ` C ) ) ) -> ( ( Id ` ( O Xc. C ) ) ` x ) = ( ( Id ` ( O Xc. C ) ) ` <. ( 1st ` x ) , ( 2nd ` x ) >. ) ) |
153 |
30
|
adantr |
|- ( ( ph /\ x e. ( ( Base ` C ) X. ( Base ` C ) ) ) -> O e. Cat ) |
154 |
|
eqid |
|- ( Id ` O ) = ( Id ` O ) |
155 |
19 153 137 20 7 154 124 25 126 128
|
xpcid |
|- ( ( ph /\ x e. ( ( Base ` C ) X. ( Base ` C ) ) ) -> ( ( Id ` ( O Xc. C ) ) ` <. ( 1st ` x ) , ( 2nd ` x ) >. ) = <. ( ( Id ` O ) ` ( 1st ` x ) ) , ( ( Id ` C ) ` ( 2nd ` x ) ) >. ) |
156 |
2 124
|
oppcid |
|- ( C e. Cat -> ( Id ` O ) = ( Id ` C ) ) |
157 |
137 156
|
syl |
|- ( ( ph /\ x e. ( ( Base ` C ) X. ( Base ` C ) ) ) -> ( Id ` O ) = ( Id ` C ) ) |
158 |
157
|
fveq1d |
|- ( ( ph /\ x e. ( ( Base ` C ) X. ( Base ` C ) ) ) -> ( ( Id ` O ) ` ( 1st ` x ) ) = ( ( Id ` C ) ` ( 1st ` x ) ) ) |
159 |
158
|
opeq1d |
|- ( ( ph /\ x e. ( ( Base ` C ) X. ( Base ` C ) ) ) -> <. ( ( Id ` O ) ` ( 1st ` x ) ) , ( ( Id ` C ) ` ( 2nd ` x ) ) >. = <. ( ( Id ` C ) ` ( 1st ` x ) ) , ( ( Id ` C ) ` ( 2nd ` x ) ) >. ) |
160 |
152 155 159
|
3eqtrd |
|- ( ( ph /\ x e. ( ( Base ` C ) X. ( Base ` C ) ) ) -> ( ( Id ` ( O Xc. C ) ) ` x ) = <. ( ( Id ` C ) ` ( 1st ` x ) ) , ( ( Id ` C ) ` ( 2nd ` x ) ) >. ) |
161 |
151 160
|
fveq12d |
|- ( ( ph /\ x e. ( ( Base ` C ) X. ( Base ` C ) ) ) -> ( ( x ( 2nd ` M ) x ) ` ( ( Id ` ( O Xc. C ) ) ` x ) ) = ( ( <. ( 1st ` x ) , ( 2nd ` x ) >. ( 2nd ` M ) <. ( 1st ` x ) , ( 2nd ` x ) >. ) ` <. ( ( Id ` C ) ` ( 1st ` x ) ) , ( ( Id ` C ) ` ( 2nd ` x ) ) >. ) ) |
162 |
5
|
adantr |
|- ( ( ph /\ x e. ( ( Base ` C ) X. ( Base ` C ) ) ) -> U e. V ) |
163 |
38
|
ffvelrnda |
|- ( ( ph /\ x e. ( ( Base ` C ) X. ( Base ` C ) ) ) -> ( ( Homf ` C ) ` x ) e. U ) |
164 |
3 26 162 163
|
setcid |
|- ( ( ph /\ x e. ( ( Base ` C ) X. ( Base ` C ) ) ) -> ( ( Id ` D ) ` ( ( Homf ` C ) ` x ) ) = ( _I |` ( ( Homf ` C ) ` x ) ) ) |
165 |
150 161 164
|
3eqtr4d |
|- ( ( ph /\ x e. ( ( Base ` C ) X. ( Base ` C ) ) ) -> ( ( x ( 2nd ` M ) x ) ` ( ( Id ` ( O Xc. C ) ) ` x ) ) = ( ( Id ` D ) ` ( ( Homf ` C ) ` x ) ) ) |
166 |
4
|
3ad2ant1 |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( O Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) ) -> C e. Cat ) |
167 |
5
|
3ad2ant1 |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( O Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) ) -> U e. V ) |
168 |
6
|
3ad2ant1 |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( O Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) ) -> ran ( Homf ` C ) C_ U ) |
169 |
|
simp21 |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( O Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) ) -> x e. ( ( Base ` C ) X. ( Base ` C ) ) ) |
170 |
169 55
|
syl |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( O Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) ) -> ( 1st ` x ) e. ( Base ` C ) ) |
171 |
169 67
|
syl |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( O Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) ) -> ( 2nd ` x ) e. ( Base ` C ) ) |
172 |
|
simp22 |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( O Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) ) -> y e. ( ( Base ` C ) X. ( Base ` C ) ) ) |
173 |
172 51
|
syl |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( O Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) ) -> ( 1st ` y ) e. ( Base ` C ) ) |
174 |
172 58
|
syl |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( O Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) ) -> ( 2nd ` y ) e. ( Base ` C ) ) |
175 |
|
simp23 |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( O Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) ) -> z e. ( ( Base ` C ) X. ( Base ` C ) ) ) |
176 |
|
xp1st |
|- ( z e. ( ( Base ` C ) X. ( Base ` C ) ) -> ( 1st ` z ) e. ( Base ` C ) ) |
177 |
175 176
|
syl |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( O Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) ) -> ( 1st ` z ) e. ( Base ` C ) ) |
178 |
|
xp2nd |
|- ( z e. ( ( Base ` C ) X. ( Base ` C ) ) -> ( 2nd ` z ) e. ( Base ` C ) ) |
179 |
175 178
|
syl |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( O Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) ) -> ( 2nd ` z ) e. ( Base ` C ) ) |
180 |
|
simp3l |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( O Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) ) -> f e. ( x ( Hom ` ( O Xc. C ) ) y ) ) |
181 |
19 21 115 8 23 169 172
|
xpchom |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( O Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) ) -> ( x ( Hom ` ( O Xc. C ) ) y ) = ( ( ( 1st ` x ) ( Hom ` O ) ( 1st ` y ) ) X. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) |
182 |
180 181
|
eleqtrd |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( O Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) ) -> f e. ( ( ( 1st ` x ) ( Hom ` O ) ( 1st ` y ) ) X. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) |
183 |
|
xp1st |
|- ( f e. ( ( ( 1st ` x ) ( Hom ` O ) ( 1st ` y ) ) X. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) -> ( 1st ` f ) e. ( ( 1st ` x ) ( Hom ` O ) ( 1st ` y ) ) ) |
184 |
182 183
|
syl |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( O Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) ) -> ( 1st ` f ) e. ( ( 1st ` x ) ( Hom ` O ) ( 1st ` y ) ) ) |
185 |
184 119
|
eleqtrdi |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( O Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) ) -> ( 1st ` f ) e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) ) |
186 |
|
xp2nd |
|- ( f e. ( ( ( 1st ` x ) ( Hom ` O ) ( 1st ` y ) ) X. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) -> ( 2nd ` f ) e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) |
187 |
182 186
|
syl |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( O Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) ) -> ( 2nd ` f ) e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) |
188 |
|
simp3r |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( O Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) ) -> g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) |
189 |
19 21 115 8 23 172 175
|
xpchom |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( O Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) ) -> ( y ( Hom ` ( O Xc. C ) ) z ) = ( ( ( 1st ` y ) ( Hom ` O ) ( 1st ` z ) ) X. ( ( 2nd ` y ) ( Hom ` C ) ( 2nd ` z ) ) ) ) |
190 |
188 189
|
eleqtrd |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( O Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) ) -> g e. ( ( ( 1st ` y ) ( Hom ` O ) ( 1st ` z ) ) X. ( ( 2nd ` y ) ( Hom ` C ) ( 2nd ` z ) ) ) ) |
191 |
|
xp1st |
|- ( g e. ( ( ( 1st ` y ) ( Hom ` O ) ( 1st ` z ) ) X. ( ( 2nd ` y ) ( Hom ` C ) ( 2nd ` z ) ) ) -> ( 1st ` g ) e. ( ( 1st ` y ) ( Hom ` O ) ( 1st ` z ) ) ) |
192 |
190 191
|
syl |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( O Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) ) -> ( 1st ` g ) e. ( ( 1st ` y ) ( Hom ` O ) ( 1st ` z ) ) ) |
193 |
8 2
|
oppchom |
|- ( ( 1st ` y ) ( Hom ` O ) ( 1st ` z ) ) = ( ( 1st ` z ) ( Hom ` C ) ( 1st ` y ) ) |
194 |
192 193
|
eleqtrdi |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( O Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) ) -> ( 1st ` g ) e. ( ( 1st ` z ) ( Hom ` C ) ( 1st ` y ) ) ) |
195 |
|
xp2nd |
|- ( g e. ( ( ( 1st ` y ) ( Hom ` O ) ( 1st ` z ) ) X. ( ( 2nd ` y ) ( Hom ` C ) ( 2nd ` z ) ) ) -> ( 2nd ` g ) e. ( ( 2nd ` y ) ( Hom ` C ) ( 2nd ` z ) ) ) |
196 |
190 195
|
syl |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( O Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) ) -> ( 2nd ` g ) e. ( ( 2nd ` y ) ( Hom ` C ) ( 2nd ` z ) ) ) |
197 |
1 2 3 166 167 168 7 8 170 171 173 174 177 179 185 187 194 196
|
hofcllem |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( O Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) ) -> ( ( ( 1st ` f ) ( <. ( 1st ` z ) , ( 1st ` y ) >. ( comp ` C ) ( 1st ` x ) ) ( 1st ` g ) ) ( <. ( 1st ` x ) , ( 2nd ` x ) >. ( 2nd ` M ) <. ( 1st ` z ) , ( 2nd ` z ) >. ) ( ( 2nd ` g ) ( <. ( 2nd ` x ) , ( 2nd ` y ) >. ( comp ` C ) ( 2nd ` z ) ) ( 2nd ` f ) ) ) = ( ( ( 1st ` g ) ( <. ( 1st ` y ) , ( 2nd ` y ) >. ( 2nd ` M ) <. ( 1st ` z ) , ( 2nd ` z ) >. ) ( 2nd ` g ) ) ( <. ( ( 1st ` x ) ( Hom ` C ) ( 2nd ` x ) ) , ( ( 1st ` y ) ( Hom ` C ) ( 2nd ` y ) ) >. ( comp ` D ) ( ( 1st ` z ) ( Hom ` C ) ( 2nd ` z ) ) ) ( ( 1st ` f ) ( <. ( 1st ` x ) , ( 2nd ` x ) >. ( 2nd ` M ) <. ( 1st ` y ) , ( 2nd ` y ) >. ) ( 2nd ` f ) ) ) ) |
198 |
169 62
|
syl |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( O Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) ) -> x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) |
199 |
|
1st2nd2 |
|- ( z e. ( ( Base ` C ) X. ( Base ` C ) ) -> z = <. ( 1st ` z ) , ( 2nd ` z ) >. ) |
200 |
175 199
|
syl |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( O Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) ) -> z = <. ( 1st ` z ) , ( 2nd ` z ) >. ) |
201 |
198 200
|
oveq12d |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( O Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) ) -> ( x ( 2nd ` M ) z ) = ( <. ( 1st ` x ) , ( 2nd ` x ) >. ( 2nd ` M ) <. ( 1st ` z ) , ( 2nd ` z ) >. ) ) |
202 |
172 79
|
syl |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( O Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) ) -> y = <. ( 1st ` y ) , ( 2nd ` y ) >. ) |
203 |
198 202
|
opeq12d |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( O Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) ) -> <. x , y >. = <. <. ( 1st ` x ) , ( 2nd ` x ) >. , <. ( 1st ` y ) , ( 2nd ` y ) >. >. ) |
204 |
203 200
|
oveq12d |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( O Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) ) -> ( <. x , y >. ( comp ` ( O Xc. C ) ) z ) = ( <. <. ( 1st ` x ) , ( 2nd ` x ) >. , <. ( 1st ` y ) , ( 2nd ` y ) >. >. ( comp ` ( O Xc. C ) ) <. ( 1st ` z ) , ( 2nd ` z ) >. ) ) |
205 |
|
1st2nd2 |
|- ( g e. ( ( ( 1st ` y ) ( Hom ` O ) ( 1st ` z ) ) X. ( ( 2nd ` y ) ( Hom ` C ) ( 2nd ` z ) ) ) -> g = <. ( 1st ` g ) , ( 2nd ` g ) >. ) |
206 |
190 205
|
syl |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( O Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) ) -> g = <. ( 1st ` g ) , ( 2nd ` g ) >. ) |
207 |
|
1st2nd2 |
|- ( f e. ( ( ( 1st ` x ) ( Hom ` O ) ( 1st ` y ) ) X. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) -> f = <. ( 1st ` f ) , ( 2nd ` f ) >. ) |
208 |
182 207
|
syl |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( O Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) ) -> f = <. ( 1st ` f ) , ( 2nd ` f ) >. ) |
209 |
204 206 208
|
oveq123d |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( O Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) ) -> ( g ( <. x , y >. ( comp ` ( O Xc. C ) ) z ) f ) = ( <. ( 1st ` g ) , ( 2nd ` g ) >. ( <. <. ( 1st ` x ) , ( 2nd ` x ) >. , <. ( 1st ` y ) , ( 2nd ` y ) >. >. ( comp ` ( O Xc. C ) ) <. ( 1st ` z ) , ( 2nd ` z ) >. ) <. ( 1st ` f ) , ( 2nd ` f ) >. ) ) |
210 |
|
eqid |
|- ( comp ` O ) = ( comp ` O ) |
211 |
19 20 7 115 8 170 171 173 174 210 9 27 177 179 184 187 192 196
|
xpcco2 |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( O Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) ) -> ( <. ( 1st ` g ) , ( 2nd ` g ) >. ( <. <. ( 1st ` x ) , ( 2nd ` x ) >. , <. ( 1st ` y ) , ( 2nd ` y ) >. >. ( comp ` ( O Xc. C ) ) <. ( 1st ` z ) , ( 2nd ` z ) >. ) <. ( 1st ` f ) , ( 2nd ` f ) >. ) = <. ( ( 1st ` g ) ( <. ( 1st ` x ) , ( 1st ` y ) >. ( comp ` O ) ( 1st ` z ) ) ( 1st ` f ) ) , ( ( 2nd ` g ) ( <. ( 2nd ` x ) , ( 2nd ` y ) >. ( comp ` C ) ( 2nd ` z ) ) ( 2nd ` f ) ) >. ) |
212 |
7 9 2 170 173 177
|
oppcco |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( O Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) ) -> ( ( 1st ` g ) ( <. ( 1st ` x ) , ( 1st ` y ) >. ( comp ` O ) ( 1st ` z ) ) ( 1st ` f ) ) = ( ( 1st ` f ) ( <. ( 1st ` z ) , ( 1st ` y ) >. ( comp ` C ) ( 1st ` x ) ) ( 1st ` g ) ) ) |
213 |
212
|
opeq1d |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( O Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) ) -> <. ( ( 1st ` g ) ( <. ( 1st ` x ) , ( 1st ` y ) >. ( comp ` O ) ( 1st ` z ) ) ( 1st ` f ) ) , ( ( 2nd ` g ) ( <. ( 2nd ` x ) , ( 2nd ` y ) >. ( comp ` C ) ( 2nd ` z ) ) ( 2nd ` f ) ) >. = <. ( ( 1st ` f ) ( <. ( 1st ` z ) , ( 1st ` y ) >. ( comp ` C ) ( 1st ` x ) ) ( 1st ` g ) ) , ( ( 2nd ` g ) ( <. ( 2nd ` x ) , ( 2nd ` y ) >. ( comp ` C ) ( 2nd ` z ) ) ( 2nd ` f ) ) >. ) |
214 |
209 211 213
|
3eqtrd |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( O Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) ) -> ( g ( <. x , y >. ( comp ` ( O Xc. C ) ) z ) f ) = <. ( ( 1st ` f ) ( <. ( 1st ` z ) , ( 1st ` y ) >. ( comp ` C ) ( 1st ` x ) ) ( 1st ` g ) ) , ( ( 2nd ` g ) ( <. ( 2nd ` x ) , ( 2nd ` y ) >. ( comp ` C ) ( 2nd ` z ) ) ( 2nd ` f ) ) >. ) |
215 |
201 214
|
fveq12d |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( O Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) ) -> ( ( x ( 2nd ` M ) z ) ` ( g ( <. x , y >. ( comp ` ( O Xc. C ) ) z ) f ) ) = ( ( <. ( 1st ` x ) , ( 2nd ` x ) >. ( 2nd ` M ) <. ( 1st ` z ) , ( 2nd ` z ) >. ) ` <. ( ( 1st ` f ) ( <. ( 1st ` z ) , ( 1st ` y ) >. ( comp ` C ) ( 1st ` x ) ) ( 1st ` g ) ) , ( ( 2nd ` g ) ( <. ( 2nd ` x ) , ( 2nd ` y ) >. ( comp ` C ) ( 2nd ` z ) ) ( 2nd ` f ) ) >. ) ) |
216 |
|
df-ov |
|- ( ( ( 1st ` f ) ( <. ( 1st ` z ) , ( 1st ` y ) >. ( comp ` C ) ( 1st ` x ) ) ( 1st ` g ) ) ( <. ( 1st ` x ) , ( 2nd ` x ) >. ( 2nd ` M ) <. ( 1st ` z ) , ( 2nd ` z ) >. ) ( ( 2nd ` g ) ( <. ( 2nd ` x ) , ( 2nd ` y ) >. ( comp ` C ) ( 2nd ` z ) ) ( 2nd ` f ) ) ) = ( ( <. ( 1st ` x ) , ( 2nd ` x ) >. ( 2nd ` M ) <. ( 1st ` z ) , ( 2nd ` z ) >. ) ` <. ( ( 1st ` f ) ( <. ( 1st ` z ) , ( 1st ` y ) >. ( comp ` C ) ( 1st ` x ) ) ( 1st ` g ) ) , ( ( 2nd ` g ) ( <. ( 2nd ` x ) , ( 2nd ` y ) >. ( comp ` C ) ( 2nd ` z ) ) ( 2nd ` f ) ) >. ) |
217 |
215 216
|
eqtr4di |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( O Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) ) -> ( ( x ( 2nd ` M ) z ) ` ( g ( <. x , y >. ( comp ` ( O Xc. C ) ) z ) f ) ) = ( ( ( 1st ` f ) ( <. ( 1st ` z ) , ( 1st ` y ) >. ( comp ` C ) ( 1st ` x ) ) ( 1st ` g ) ) ( <. ( 1st ` x ) , ( 2nd ` x ) >. ( 2nd ` M ) <. ( 1st ` z ) , ( 2nd ` z ) >. ) ( ( 2nd ` g ) ( <. ( 2nd ` x ) , ( 2nd ` y ) >. ( comp ` C ) ( 2nd ` z ) ) ( 2nd ` f ) ) ) ) |
218 |
198
|
fveq2d |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( O Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) ) -> ( ( Homf ` C ) ` x ) = ( ( Homf ` C ) ` <. ( 1st ` x ) , ( 2nd ` x ) >. ) ) |
219 |
218 90
|
eqtr4di |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( O Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) ) -> ( ( Homf ` C ) ` x ) = ( ( 1st ` x ) ( Homf ` C ) ( 2nd ` x ) ) ) |
220 |
34 7 8 170 171
|
homfval |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( O Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) ) -> ( ( 1st ` x ) ( Homf ` C ) ( 2nd ` x ) ) = ( ( 1st ` x ) ( Hom ` C ) ( 2nd ` x ) ) ) |
221 |
219 220
|
eqtrd |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( O Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) ) -> ( ( Homf ` C ) ` x ) = ( ( 1st ` x ) ( Hom ` C ) ( 2nd ` x ) ) ) |
222 |
202
|
fveq2d |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( O Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) ) -> ( ( Homf ` C ) ` y ) = ( ( Homf ` C ) ` <. ( 1st ` y ) , ( 2nd ` y ) >. ) ) |
223 |
222 98
|
eqtr4di |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( O Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) ) -> ( ( Homf ` C ) ` y ) = ( ( 1st ` y ) ( Homf ` C ) ( 2nd ` y ) ) ) |
224 |
34 7 8 173 174
|
homfval |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( O Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) ) -> ( ( 1st ` y ) ( Homf ` C ) ( 2nd ` y ) ) = ( ( 1st ` y ) ( Hom ` C ) ( 2nd ` y ) ) ) |
225 |
223 224
|
eqtrd |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( O Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) ) -> ( ( Homf ` C ) ` y ) = ( ( 1st ` y ) ( Hom ` C ) ( 2nd ` y ) ) ) |
226 |
221 225
|
opeq12d |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( O Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) ) -> <. ( ( Homf ` C ) ` x ) , ( ( Homf ` C ) ` y ) >. = <. ( ( 1st ` x ) ( Hom ` C ) ( 2nd ` x ) ) , ( ( 1st ` y ) ( Hom ` C ) ( 2nd ` y ) ) >. ) |
227 |
200
|
fveq2d |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( O Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) ) -> ( ( Homf ` C ) ` z ) = ( ( Homf ` C ) ` <. ( 1st ` z ) , ( 2nd ` z ) >. ) ) |
228 |
|
df-ov |
|- ( ( 1st ` z ) ( Homf ` C ) ( 2nd ` z ) ) = ( ( Homf ` C ) ` <. ( 1st ` z ) , ( 2nd ` z ) >. ) |
229 |
227 228
|
eqtr4di |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( O Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) ) -> ( ( Homf ` C ) ` z ) = ( ( 1st ` z ) ( Homf ` C ) ( 2nd ` z ) ) ) |
230 |
34 7 8 177 179
|
homfval |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( O Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) ) -> ( ( 1st ` z ) ( Homf ` C ) ( 2nd ` z ) ) = ( ( 1st ` z ) ( Hom ` C ) ( 2nd ` z ) ) ) |
231 |
229 230
|
eqtrd |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( O Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) ) -> ( ( Homf ` C ) ` z ) = ( ( 1st ` z ) ( Hom ` C ) ( 2nd ` z ) ) ) |
232 |
226 231
|
oveq12d |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( O Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) ) -> ( <. ( ( Homf ` C ) ` x ) , ( ( Homf ` C ) ` y ) >. ( comp ` D ) ( ( Homf ` C ) ` z ) ) = ( <. ( ( 1st ` x ) ( Hom ` C ) ( 2nd ` x ) ) , ( ( 1st ` y ) ( Hom ` C ) ( 2nd ` y ) ) >. ( comp ` D ) ( ( 1st ` z ) ( Hom ` C ) ( 2nd ` z ) ) ) ) |
233 |
202 200
|
oveq12d |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( O Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) ) -> ( y ( 2nd ` M ) z ) = ( <. ( 1st ` y ) , ( 2nd ` y ) >. ( 2nd ` M ) <. ( 1st ` z ) , ( 2nd ` z ) >. ) ) |
234 |
233 206
|
fveq12d |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( O Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) ) -> ( ( y ( 2nd ` M ) z ) ` g ) = ( ( <. ( 1st ` y ) , ( 2nd ` y ) >. ( 2nd ` M ) <. ( 1st ` z ) , ( 2nd ` z ) >. ) ` <. ( 1st ` g ) , ( 2nd ` g ) >. ) ) |
235 |
|
df-ov |
|- ( ( 1st ` g ) ( <. ( 1st ` y ) , ( 2nd ` y ) >. ( 2nd ` M ) <. ( 1st ` z ) , ( 2nd ` z ) >. ) ( 2nd ` g ) ) = ( ( <. ( 1st ` y ) , ( 2nd ` y ) >. ( 2nd ` M ) <. ( 1st ` z ) , ( 2nd ` z ) >. ) ` <. ( 1st ` g ) , ( 2nd ` g ) >. ) |
236 |
234 235
|
eqtr4di |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( O Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) ) -> ( ( y ( 2nd ` M ) z ) ` g ) = ( ( 1st ` g ) ( <. ( 1st ` y ) , ( 2nd ` y ) >. ( 2nd ` M ) <. ( 1st ` z ) , ( 2nd ` z ) >. ) ( 2nd ` g ) ) ) |
237 |
198 202
|
oveq12d |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( O Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) ) -> ( x ( 2nd ` M ) y ) = ( <. ( 1st ` x ) , ( 2nd ` x ) >. ( 2nd ` M ) <. ( 1st ` y ) , ( 2nd ` y ) >. ) ) |
238 |
237 208
|
fveq12d |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( O Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) ) -> ( ( x ( 2nd ` M ) y ) ` f ) = ( ( <. ( 1st ` x ) , ( 2nd ` x ) >. ( 2nd ` M ) <. ( 1st ` y ) , ( 2nd ` y ) >. ) ` <. ( 1st ` f ) , ( 2nd ` f ) >. ) ) |
239 |
|
df-ov |
|- ( ( 1st ` f ) ( <. ( 1st ` x ) , ( 2nd ` x ) >. ( 2nd ` M ) <. ( 1st ` y ) , ( 2nd ` y ) >. ) ( 2nd ` f ) ) = ( ( <. ( 1st ` x ) , ( 2nd ` x ) >. ( 2nd ` M ) <. ( 1st ` y ) , ( 2nd ` y ) >. ) ` <. ( 1st ` f ) , ( 2nd ` f ) >. ) |
240 |
238 239
|
eqtr4di |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( O Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) ) -> ( ( x ( 2nd ` M ) y ) ` f ) = ( ( 1st ` f ) ( <. ( 1st ` x ) , ( 2nd ` x ) >. ( 2nd ` M ) <. ( 1st ` y ) , ( 2nd ` y ) >. ) ( 2nd ` f ) ) ) |
241 |
232 236 240
|
oveq123d |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( O Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) ) -> ( ( ( y ( 2nd ` M ) z ) ` g ) ( <. ( ( Homf ` C ) ` x ) , ( ( Homf ` C ) ` y ) >. ( comp ` D ) ( ( Homf ` C ) ` z ) ) ( ( x ( 2nd ` M ) y ) ` f ) ) = ( ( ( 1st ` g ) ( <. ( 1st ` y ) , ( 2nd ` y ) >. ( 2nd ` M ) <. ( 1st ` z ) , ( 2nd ` z ) >. ) ( 2nd ` g ) ) ( <. ( ( 1st ` x ) ( Hom ` C ) ( 2nd ` x ) ) , ( ( 1st ` y ) ( Hom ` C ) ( 2nd ` y ) ) >. ( comp ` D ) ( ( 1st ` z ) ( Hom ` C ) ( 2nd ` z ) ) ) ( ( 1st ` f ) ( <. ( 1st ` x ) , ( 2nd ` x ) >. ( 2nd ` M ) <. ( 1st ` y ) , ( 2nd ` y ) >. ) ( 2nd ` f ) ) ) ) |
242 |
197 217 241
|
3eqtr4d |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) /\ z e. ( ( Base ` C ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( O Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( O Xc. C ) ) z ) ) ) -> ( ( x ( 2nd ` M ) z ) ` ( g ( <. x , y >. ( comp ` ( O Xc. C ) ) z ) f ) ) = ( ( ( y ( 2nd ` M ) z ) ` g ) ( <. ( ( Homf ` C ) ` x ) , ( ( Homf ` C ) ` y ) >. ( comp ` D ) ( ( Homf ` C ) ` z ) ) ( ( x ( 2nd ` M ) y ) ` f ) ) ) |
243 |
21 22 23 24 25 26 27 28 31 33 41 48 123 165 242
|
isfuncd |
|- ( ph -> ( Homf ` C ) ( ( O Xc. C ) Func D ) ( 2nd ` M ) ) |
244 |
|
df-br |
|- ( ( Homf ` C ) ( ( O Xc. C ) Func D ) ( 2nd ` M ) <-> <. ( Homf ` C ) , ( 2nd ` M ) >. e. ( ( O Xc. C ) Func D ) ) |
245 |
243 244
|
sylib |
|- ( ph -> <. ( Homf ` C ) , ( 2nd ` M ) >. e. ( ( O Xc. C ) Func D ) ) |
246 |
18 245
|
eqeltrd |
|- ( ph -> M e. ( ( O Xc. C ) Func D ) ) |