Step |
Hyp |
Ref |
Expression |
1 |
|
hofval.m |
|- M = ( HomF ` C ) |
2 |
|
hofval.c |
|- ( ph -> C e. Cat ) |
3 |
|
hof1.b |
|- B = ( Base ` C ) |
4 |
|
hof1.h |
|- H = ( Hom ` C ) |
5 |
|
hof1.x |
|- ( ph -> X e. B ) |
6 |
|
hof1.y |
|- ( ph -> Y e. B ) |
7 |
|
hof2.z |
|- ( ph -> Z e. B ) |
8 |
|
hof2.w |
|- ( ph -> W e. B ) |
9 |
|
hof2.o |
|- .x. = ( comp ` C ) |
10 |
|
hof2.f |
|- ( ph -> F e. ( Z H X ) ) |
11 |
|
hof2.g |
|- ( ph -> G e. ( Y H W ) ) |
12 |
1 2 3 4 5 6 7 8 9
|
hof2fval |
|- ( ph -> ( <. X , Y >. ( 2nd ` M ) <. Z , W >. ) = ( f e. ( Z H X ) , g e. ( Y H W ) |-> ( h e. ( X H Y ) |-> ( ( g ( <. X , Y >. .x. W ) h ) ( <. Z , X >. .x. W ) f ) ) ) ) |
13 |
|
simplrr |
|- ( ( ( ph /\ ( f = F /\ g = G ) ) /\ h e. ( X H Y ) ) -> g = G ) |
14 |
13
|
oveq1d |
|- ( ( ( ph /\ ( f = F /\ g = G ) ) /\ h e. ( X H Y ) ) -> ( g ( <. X , Y >. .x. W ) h ) = ( G ( <. X , Y >. .x. W ) h ) ) |
15 |
|
simplrl |
|- ( ( ( ph /\ ( f = F /\ g = G ) ) /\ h e. ( X H Y ) ) -> f = F ) |
16 |
14 15
|
oveq12d |
|- ( ( ( ph /\ ( f = F /\ g = G ) ) /\ h e. ( X H Y ) ) -> ( ( g ( <. X , Y >. .x. W ) h ) ( <. Z , X >. .x. W ) f ) = ( ( G ( <. X , Y >. .x. W ) h ) ( <. Z , X >. .x. W ) F ) ) |
17 |
16
|
mpteq2dva |
|- ( ( ph /\ ( f = F /\ g = G ) ) -> ( h e. ( X H Y ) |-> ( ( g ( <. X , Y >. .x. W ) h ) ( <. Z , X >. .x. W ) f ) ) = ( h e. ( X H Y ) |-> ( ( G ( <. X , Y >. .x. W ) h ) ( <. Z , X >. .x. W ) F ) ) ) |
18 |
|
ovex |
|- ( X H Y ) e. _V |
19 |
18
|
mptex |
|- ( h e. ( X H Y ) |-> ( ( G ( <. X , Y >. .x. W ) h ) ( <. Z , X >. .x. W ) F ) ) e. _V |
20 |
19
|
a1i |
|- ( ph -> ( h e. ( X H Y ) |-> ( ( G ( <. X , Y >. .x. W ) h ) ( <. Z , X >. .x. W ) F ) ) e. _V ) |
21 |
12 17 10 11 20
|
ovmpod |
|- ( ph -> ( F ( <. X , Y >. ( 2nd ` M ) <. Z , W >. ) G ) = ( h e. ( X H Y ) |-> ( ( G ( <. X , Y >. .x. W ) h ) ( <. Z , X >. .x. W ) F ) ) ) |